
Simulink® Real-Time™

API Guide

R2014b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Real-Time™ API Guide
© COPYRIGHT 2002–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

July 2002 Online only New for Version 2 (Release 13)
October 2002 Online only Updated for Version 2 (Release 13)
September 2003 Online only Revised for Version 2.0.1 (Release 13SP1)
June 2004 Online only Revised for Version 2.5 (Release 14)
August 2004 Online only Revised for Version 2.6 (Release 14+)
October 2004 Online only Revised for Version 2.6.1 (Release 14SP1)
November 2004 Online only Revised for Version 2.7 (Release 14SP1+)
March 2005 Online only Revised for Version 2.7.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.8 (Release 14SP3)
March 2006 Online only Revised for Version 2.9 (Release 2006a)
May 2006 Online only Revised for Version 3.0 (Release 2006a+)
September 2006 Online only Revised for Version 3.1 (Release 2006b)
March 2007 Online only Revised for Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.3 (Release 2007b)
March 2008 Online only Revised for Version 3.4 (Release 2008a)
October 2008 Online only Revised for Version 4.0 (Release 2008b)
March 2009 Online only Revised for Version 4.1 (Release 2009a)
September 2009 Online only Revised for Version 4.2 (Release 2009b)
March 2010 Online only Revised for Version 4.3 (Release 2010a)
September 2010 Online only Revised for Version 4.4 (Release 2010b)
April 2011 Online only Revised for Version 5.0 (Release 2011a)
September 2011 Online only Revised for Version 5.1 (Release 2011b)
March 2012 Online only Revised for Version 5.2 (Release 2012a)
September 2012 Online only Revised for Version 5.3 (Release 2012b)
March 2013 Online only Revised for Version 5.4 (Release 2013a)
September 2013 Online only Revised for Version 5.5 (Release 2013b)
March 2014 Online only Revised for Version 6.0 (Release 2014a)
October 2014 Online only Revised for Version 6.1 (Release 2014b)

v

Contents

Introduction
1

Simulink Real-Time APIs . 1-2

Simulink Real-Time API for Microsoft .NET Framework . . . 1-3
xPCTargetPC Class . 1-5
xPCApplication Class . 1-5
xPCFileSystem . 1-5

Simulink Real-Time C API . 1-7

C API Error Messages . 1-8

Simulink Real-Time API for Microsoft .NET
Framework

2
Using the Simulink Real-Time API for Microsoft .NET

Framework . 2-2
. 2-2

Simulink Real-Time .NET API Application Creation 2-4

Simulink Real-Time .NET API Application Deployment 2-6

Simulink Real-Time .NET API Client Application
Examples . 2-7

vi Contents

Simulink Real-Time API for C
3

Using the C API . 3-2

Visual C Console Application . 3-4
Real-Time Application . 3-4
Folders and Files . 3-4
Building the Simulink Real-Time Application 3-5
Creating a Visual C Application . 3-6
Building a Visual C Application . 3-8
Running a Simulink Real-Time Visual C API Application . . . 3-9
Using the Simulink Real-Time C API Application 3-9
C Code for sf_car_xpc.c . 3-15

Simulink Real-Time .NET API Examples
4

Visual Basic GUI Using .NET . 4-2
Before Starting . 4-2
Accessing the Demo Project Solution 4-3
Rebuilding the Demo Project Solution 4-3
Using the Demo Executable . 4-3

vii

Simulink Real-Time API Reference for
Microsoft .NET Framework

5

Simulink Real-Time API Reference for C
6

Simulink Real-Time API Reference for COM
7

MATLAB API
8

viii

1

Introduction

• “Simulink Real-Time APIs” on page 1-2
• “Simulink Real-Time API for Microsoft .NET Framework” on page 1-3
• “Simulink Real-Time C API” on page 1-7
• “C API Error Messages” on page 1-8

1 Introduction

1-2

Simulink Real-Time APIs

The Simulink® Real-Time™ software provides several APIs that enable you to create
custom applications to control real-time applications running on target computers.
These include Simulink Real-Time MATLAB® Language, the Simulink Real-Time API
for Microsoft® .NET Framework, and the Simulink Real-Time C API. These interfaces
provide the same functionality for you to write custom solutions (for example, client
real-time applications and batch runs) that use the Simulink Real-Time software. The
Simulink Real-Time documentation collectively refers to these APIs as Simulink Real-
Time API.

The Simulink Real-Time APIs allow you to:

• Establish communication between the development computer and the target
computer via an Ethernet or serial link

• Load the real-time application, a .dlm file, to the target computer
• Run that application on the target computer
• Monitor the behavior of the real-time application on the target computer
• Stop that application on the target computer
• Unload the real-time application from the target computer
• Close the connection to the target computer

The following sections describe each library:

• “Simulink Real-Time API for Microsoft .NET Framework” on page 1-3
• “Simulink Real-Time C API” on page 1-7

 Simulink Real-Time API for Microsoft .NET Framework

1-3

Simulink Real-Time API for Microsoft .NET Framework

The Simulink Real-Time API for Microsoft .NET Framework consists of objects arranged
in hierarchical order. Each of these objects has functions and properties that allow you
to manipulate and interact with the API. The API provides a number of object types,
including those for the target computer, real-time applications, scopes, and the file
system. You can use these API functions from languages and applications that support
managed code.

The Microsoft Windows® API supplies the infrastructure for using threads. The Simulink
Real-Time API for Microsoft .NET Framework builds on top of that infrastructure to
provide a programming model that includes asynchronous support. You do not need prior
knowledge of threads programming to use this API.

The Simulink Real-Time .NET object model closely models the Simulink Real-Time
system, as shown in the this conceptual diagram.

Target Computer

1 Introduction

1-4

The API object hierarchy derived from the Simulink Real-Time system is shown in this
conceptual diagram.

Signals

Parameters

Scopes

Drives

Output

TET

Time

HostScopes

TargetScopes

Directories

DataLogObject

DataLogObject

DataLogObject

DataLogObject

HostScope

Files

ScopeSignals

DataScSignalObject

Application File system

State

xPCTargetPC

Signal

Parameter
Logger

Outputs

TargetScope
ScopeSignals

ScopeSignal

ScopeSignal

FileScopes

ScopeSignals

DataScSignalObject
ScopeSignal

Drive

Directories
Files

FileScope

States

The key object types are xPCTargetPC, xPCApplication, and xPCFileSystem.

 Simulink Real-Time API for Microsoft .NET Framework

1-5

xPCTargetPC Class

The xPCTargetPC Class object represents the overall Simulink Real-Time system.

The xPCTargetPC object is at the root level of the object model. After you connect
the .NET application running on the development computer to the real-time application
running on the target computer, the object exposes information about the Simulink Real-
Time session . xPCTargetPC provides many member functions that you use to access
information and to manipulate the real-time application and the target computer file
system.

An xPCTargetPC object contains two main object types, xPCApplication and
xPCFileSystem.

xPCApplication Class

The xPCApplication Class object represents the real-time application that you
generate from a Simulink model and download to the target computer.

With the xPCApplication object, you can access application information, change
application behavior, and access scope, signal, parameter, and data logging objects:

• xPCScopes Class — Represents a container or placeholder for Simulink Real-Time
target, host, and file scopes.

• xPCSignals Class — Represents a container or placeholder for application signals.
With this object, you can access one or more xPCSignal objects.

• xPCSignal Class — Represents a specific application signal, which represents the
port signal of a nongraphical block output. With this object, you can access signal-
related information and monitor signal behavior during simulation.

• xPCParameters Class — Represents a container or placeholder for application
parameters. With this object, you can access one or more xPCParameter objects.

• xPCParameter Class — Represents a specific application parameter or a run-
time parameter of a specific block. With this object, you can access block parameter
information and tune parameter values during simulation.

• xPCAppLogger Class — Represents a placeholder for specific logging objects.

xPCFileSystem

An xPCFileSystem Class object represents the entire Simulink Real-Time file system.

1 Introduction

1-6

An xPCFileSystem object contains objects like the following:

• xPCDriveInfo Class — Represents a volume drive that the target computer
recognizes.

• xPCDirectoryInfo Class — Represents a target computer folder item.
• xPCFileInfo Class — Represents a target computer file item.

 Simulink Real-Time C API

1-7

Simulink Real-Time C API

The Simulink Real-Time C API consists of a series of C functions that you can call from
a C or C++ application. This API is designed for multi-threaded operation. The Simulink
Real-Time C API DLL consists of C functions that you can incorporate into a high-level
language application. A user can use an application written through either interface
to load, run, and monitor a Simulink Real-Time application without interacting with
MATLAB. With the Simulink Real-Time C API, you write the application in a high-level
language (such as C, C++, or Java®) that works with a Simulink Real-Time application;
this option requires that you are an experienced programmer.

The xpcapi.dll file contains the Simulink Real-Time C API dynamic link library,
which contains over 90 functions you can use to access the real-time application. Because
xpcapi.dll is a dynamic link library, your program can use run-time linking rather
than static linking at compile time. Accessing the Simulink Real-Time C API DLL is
beneficial when you are building applications using development environments such as
Microsoft Foundation Class Library/Active Template Library (MFC/ATL), DLL, Win32
(non-MFS) program and DLL, and console programs integrating with third-party product
APIs (for example, Altia®).

All custom Simulink Real-Time C API applications must link with the xpcapi.dll file
(Simulink Real-Time C API DLL). Also associated with the dynamic link library is the
xpcinitfree.c file. This file contains functions that load and unload the Simulink
Real-Time C API. You must build this file along with the custom Simulink Real-Time C
API application.

The Simulink Real-Time C API consists of blocking functions. For communications
between the and target computer, a default timeout of 5 seconds controls how long a
target computer can take to communicate with a development computer.

The documentation reflects the fact that the API is written in the C programming
language. However, the API functions are usable from other languages and applications,
such as C++ and Java.

Note: To write a non-C application that calls functions in the Simulink Real-Time C API
library, refer to the compiler documentation for a description of how to access functions
from a library DLL. You must follow these directions to access the Simulink Real-Time C
API DLL.

1 Introduction

1-8

C API Error Messages
The header file matlabroot\toolbox\rtw\targets\xpc\api\xpcapiconst.h
defines these error messages.

Message Description

ECOMPORTACCFAIL COM port access failed

ECOMPORTISOPEN COM port is already opened

ECOMPORTREAD ReadFile failed while reading from COM port

ECOMPORTWRITE WriteFile failed while writing to COM port

ECOMTIMEOUT timeout while receiving: check serial

communication

EFILEOPEN Error opening file

EFILEREAD Error reading file

EFILERENAME Error renaming file

EFILEWRITE Error writing file

EINTERNAL Internal Error

EINVADDR Invalid IP Address

EINVARGUMENT Invalid Argument

EINVALIDMODEL Model name does not match saved value

EINVBAUDRATE Invalid value for baudrate

EINVCOMMTYP Invalid communication type

EINVCOMPORT COM port can only be 0 or 1 (COM1 or COM2)

EINVDECIMATION Decimation must be positive

EINVFILENAME Invalid file name

EINVINSTANDALONE
Command not valid for StandAlone

EINVLGDATA Invalid lgdata structure

EINVLGINCR Invalid increment for value equidistant logging

EINVLGMODE Invalid Logging mode

EINVLOGID Invalid log identifier

EINVNUMPARAMS Invalid number of parameters

 C API Error Messages

1-9

Message Description

EINVNUMSIGNALS Invalid number of signals

EINVPARIDX Invalid parameter index

EINVPORT Invalid Port Number

EINVSCIDX Invalid Scope Index

EINVSCTYPE Invalid Scope type

EINVSIGIDX Invalid Signal index

EINVTRIGMODE Invalid trigger mode

EINVTRIGSLOPE Invalid Trigger Slope Value

EINVTRSCIDX Invalid Trigger Scope index

EINVNUMSAMP Number of samples must be nonnegative

EINVSTARTVAL Invalid value for "start"

EINVTFIN Invalid value for TFinal

EINVTS Invalid value for Ts (must be between 8e-6 and

10)

EINVWSVER Invalid Winsock version (1.1 needed)

EINVXPCVERSION Target has an invalid version of Simulink Real-

Time

ELOADAPPFIRST Load the application first

ELOGGINGDISABLED Logging is disabled

EMALFORMED Malformed message

EMEMALLOC Memory allocation error

ENODATALOGGED No data has been logged

ENOERR No error

ENOFREEPORT No free Port in C API

ENOMORECHANNELS No more channels in scope

ENOSPACE Space not allocated

EOUTPUTLOGDISABLED Output Logging is disabled

EPARNOTFOUND Parameter not found

EPARSIZMISMATCH Parameter Size mismatch

1 Introduction

1-10

Message Description

EPINGCONNECT Could not connect to Ping socket

EPINGPORTOPEN Error opening Ping port

EPINGSOCKET Ping socket error

EPORTCLOSED Port is not open

ERUNSIMFIRST Run simulation first

ESCFINVALIDFNAME Invalid filename tag used for dynamic file name

ESCFISNOTAUTO Autorestart must be enabled for dynamic file

names

ESCFNUMISNOTMULT MaxWriteFileSize must be a multiple of the

writesize

ESCTYPENOTTGT Scope Type is not "Target"

ESIGLABELNOTFOUND Signal label not found

ESIGLABELNOTUNIQUE Ambiguous signal label (signal labels are not

unique)

ESIGNOTFOUND Signal not found

ESOCKOPEN Socket Open Error

ESTARTSIMFIRST Start simulation first

ESTATELOGDISABLED State Logging is disabled

ESTOPSCFIRST Stop scope first

ESTOPSIMFIRST Stop simulation first

ETCPCONNECT TCP/IP Connect Error

ETCPREAD TCP/IP Read Error

ETCPTIMEOUT TCP/IP timeout while receiving data

ETCPWRITE TCP/IP Write error

ETETLOGDISABLED TET Logging is disabled

ETGTMEMALLOC Target memory allocation failed

ETIMELOGDISABLED Time Logging is disabled

ETOOMANYSAMPLES Too Many Samples requested

ETOOMANYSCOPES Too many scopes are present

 C API Error Messages

1-11

Message Description

ETOOMANYSIGNALS Too many signals in Scope

EUNLOADAPPFIRST Unload the application first

EUSEDYNSCOPE Use DYNAMIC_SCOPE flag at compile time

EWRITEFILE LoadDLM: WriteFile Error

EWSINIT WINSOCK: Initialization Error

EWSNOTREADY Winsock not ready

1-12

2

Simulink Real-Time API for
Microsoft .NET Framework

2 Simulink Real-Time API for Microsoft .NET Framework

2-2

Using the Simulink Real-Time API for Microsoft .NET Framework

The Simulink Real-Time API for Microsoft .NET Framework is a fully managed and
fully programmable .NET framework component. It contains components and types
that enable you to quickly design Simulink Real-Time client applications. Although
the framework is designed to work with Microsoft Visual Studio®, you can use it with
other development environments and programming languages that support the .NET
framework.

The Simulink Real-Time .NET API includes the following features.

• Microsoft Visual Studio design time.
• Intuitive object model (modeled after the Simulink Real-Time system environment).
• Simplified client model programming for asynchronous communication with the

target computer.

The Simulink Real-Time .NET API provides multiple ways for you to interface client-side
applications with target computers, including outside the MATLAB environment. For
example:

• Visual instrumentation for your real-time application.
• Custom applications to perform data observation, collection, and archiving.
• Real-time application debugging from a remote client computer.
• Calibration, test, and evaluation of real-time processes.
• Real-time data analysis.
• Batch processing and automation scripts, which can run in a shell environment (such

as PowerShell™) or as a process console standalone application (.exe file).

The Simulink Real-Time API for .NET framework supports a run-time user-driven
mode of execution and an optional developer-driven mode of execution, or design-time
capability. You can integrate the design-time capability with the Microsoft Visual Studio
IDE. The following operations are available:

• Drag-and-drop UI elements into the form design
• Configure properties using a design-time properties window
• Delete UI elements from the form design

For more information on using Microsoft Visual Studio .NET, see http://
msdn.microsoft.com/en-us/library/aa973739(v=vs.71).aspx.

http://msdn.microsoft.com/en-us/library/aa973739(v=vs.71).aspx
http://msdn.microsoft.com/en-us/library/aa973739(v=vs.71).aspx

 Using the Simulink Real-Time API for Microsoft .NET Framework

2-3

For some examples of .NET applications, see “Simulink Real-Time .NET API Client
Application Examples”

2 Simulink Real-Time API for Microsoft .NET Framework

2-4

Simulink Real-Time .NET API Application Creation
Before creating your Microsoft .NET Framework client application, you must set up the
development environment. In addition to the products listed in System Requirements ,
install the following products:

• Third-Party Development Environment — To build a custom application that
references interfaces in the Simulink Real-Time API for the .NET Framework, use
a third-party development environment and compiler that can interact with .NET.
For example, the Windows PowerShell, Microsoft Visual Studio, and the MATLAB
environments.

• Third-Party Compiler — To build a custom application (.exe, DLL) that calls functions
from the Simulink Real-Time API libraries, use a third-party compiler that generates
code for Win32 systems. You can write client applications that call these functions in
another high-level language, such as C#, C++, or C.

In the Visual Studio environment, use the xPCTargetPC component:

1 Add the xPCTargetPC component to the Visual Studio Toolbox.
2 To use this component, create a Windows application.
3 Add an xPCTargetPC object to the application form by dragging an xPCTargetPC

control from the Toolbox window to the design surface.
4 To explore and customize the xPCTargetPC properties, click the xPCTargetPC

control in the design surface.

The Visual Studio Properties window opens. In the Properties window, the
xPCTargetPC control makes available its data and appearance properties.

5 Add a reference for xPCFramework.dll to your project by including the following in
your code.

using MathWorks.xPCTarget.FrameWork;

You can then access the types available from the Simulink Real-Time environment,
for example, when creating a console application.

6 To use the design-time capability of the Microsoft Visual Studio environment,
copy the xpcapi.dll file to the same folder as the application executable. The
application also needs this file to execute.

Simulink Real-Time includes a 32-bit and a 64-bit version of the xpcapi.dll. If the
target computer is a 64-bit computer, you must use the 64-bit version.

http://www.mathworks.com/products/xpctarget/requirements.html

 Simulink Real-Time .NET API Application Creation

2-5

• On 64-bit platforms, if you build a 64-bit real-time application in the Microsoft Visual
Studio environment, and want to use the xPCTargetPC nonvisual component, do the
following.

• Place the 32-bit version of xpcapi.dll in the solution folder.
• Place the 64-bit version of xpcapi.dll in the application folder that contains the

.exe file.

Placing the 32-bit version of xpcapi.dll in the solution folder enables you to use the
design time capabilities of the Visual Studio environment.

• You can connect a target computer to only one development computer at a time.
Before starting your .NET client application, be sure to disconnect the target
computer from the development computer (xPCTargetPC.disconnect). You can use
the slrtpingtarget from the Command Window to verify that the computers are
not connected. When execution is finished, this function disconnects from the target
computer.

If your development computer has additional network resources, you can connect
additional target computers to the same development computer.

• When your .NET client application starts, first connect the development computer to
the target computer (xPCTargetPC.connect), and then test the link between the
development and target computers (xPCTargetPC.ping).

2 Simulink Real-Time API for Microsoft .NET Framework

2-6

Simulink Real-Time .NET API Application Deployment

To deploy your Microsoft .NET Framework client application, such as a UI:

• You must have a Simulink Real-Time license to deploy or distribute your client
application.

• When you build your application, the Visual Studio software builds the application
files for your executable, including a *.exe file. When you deploy or distribute your
application, include these files in the same folder.

• Keep in mind the relationship between the client application, xPCFramework.dll,
and xpcapi.dll. In particular, the application depends on xPCFramework.dll,
which depends on pcapi.dll.

Be sure to provide the version of xpcapi.dll (32-bit or 64-bit) for which your
application is built.

 Simulink Real-Time .NET API Client Application Examples

2-7

Simulink Real-Time .NET API Client Application Examples

Simulink Real-Time includes examples showing how to the Simulink Real-Time API for
Microsoft .NET Framework to create client applications that run on the development
computer and interface with a model downloaded on the target computer.

The example Simple Client Application with the .NET API shows two client applications,
Example 1 and Example 2.

• Example 1 — Provides a UI with buttons, text boxes, and a track bar through which
you can enter the IP address port of the target computer with which you want to
connect.

• Example 2 — Provides a UI similar to that in Example 1, with also a chart that
displays signals from the xpcosc real-time application.

Another example, FileSystemBrowse, provides a file browser that runs on the
development computer and connects to the target computer to browse its file system.

FileSystemBrowse is located in:
matlabroot\toolbox\rtw\targets\xpc\api\xPCFrameworkSamples\FileSystemBrowse

FileSystemBrowse is a C# project developed with the Microsoft Visual Studio 2008
IDE. See the Readme.txt file in the example folder for instructions on how to access and
build the example code.

2-8

3

Simulink Real-Time API for C

• “Using the C API” on page 3-2
• “Visual C Console Application” on page 3-4

3 Simulink Real-Time API for C

3-2

Using the C API

Keep the following guidelines in mind when you begin to write Simulink Real-Time C
API applications with the Simulink Real-Time C API DLL:

• Carefully match the function data types as documented in the function reference. For
C, the API includes a header file that matches the data types.

• To write a non-C application that calls functions in the Simulink Real-Time C
API library, refer to the compiler documentation for a description of how to access
functions from a library DLL. You must follow these directions to access the Simulink
Real-Time C API DLL

• You can work with Simulink Real-Time applications with either MATLAB or a
Simulink Real-Time C API application. If you are working with a Simulink Real-Time
application simultaneously with a MATLAB session interacting with the target, keep
in mind that only one application can access the target computer at a time. To move
from the MATLAB session to your application, in the MATLAB Command Window,
type

close(slrt)

This frees the connection to the target computer for use by your Simulink Real-
Time C API application. Conversely, you will need to quit your application, or do
the equivalent of calling the function xPCClosePort, to access the target from a
MATLAB session.

• The Simulink Real-Time C API functions that communicate with the target computer
check for timeouts during communication. If a timeout occurs, these functions
will exit with the global variable xPCError set to either ECOMTIMEOUT (serial
connections) or ETCPTIMEOUT (TCP/IP connections). Use the xPCGetLoadTimeOut
and xPCSetLoadTimeOut functions to get and set the timeout values, respectively.

There are a few things that are not covered in the reference topics for the individual
functions, because they are common to almost all the functions in the Simulink Real-
Time C API. These are

• Almost every function (except xPCOpenSerialPort, xPCOpenTcpIpPort,
xPCGetLastError, and xPCErrorMsg) has as one of its parameters the
integer variable port. This variable is returned by xPCOpenSerialPort and
xPCOpenTcpIpPort, and should be used to represent the communications link with
the target computer.

 Using the C API

3-3

• Almost every function (except xPCGetLastError and xPCErrorMsg) sets a global
error value in case of error. The application obtains this value by calling the function
xPCGetLastError, and retrieves a descriptive string about the error by using the
function xPCErrorMsg. Although the actual error values are subject to change, a zero
value typically means that the operation completed without producing an error, while
a nonzero value typically signifies an error condition. Note also that the library resets
the error value every time an API function is called; therefore, your application should
check the error status as soon as possible after a function call.

Some functions also use their return values (if applicable) to signify that an
error has occurred. In these cases as well, you can obtain the exact error with
xPCGetLastError.

3 Simulink Real-Time API for C

3-4

Visual C Console Application

This topic shows how to use the Simulink Real-Time C API to create a Win32 console
application written in C. You can use this example as a template to write your own
application.

In this section...

“Real-Time Application” on page 3-4
“Folders and Files” on page 3-4
“Building the Simulink Real-Time Application” on page 3-5
“Creating a Visual C Application” on page 3-6
“Building a Visual C Application” on page 3-8
“Running a Simulink Real-Time Visual C API Application” on page 3-9
“Using the Simulink Real-Time C API Application” on page 3-9
“C Code for sf_car_xpc.c” on page 3-15

Real-Time Application

Before you start, you should have an existing Simulink Real-Time application that
you want to load and run on a target computer. The following topics use the real-time
application sf_car_xpc.dlm, built from the Simulink model sf_car_xpc, which
models an automatic transmission control system. The automatic transmission control
system consists of modules that represent the engine, transmission, and vehicle, with
an additional logic block to control the transmission ratio. User inputs to the model are
in the form of throttle (%) and brake torque (pound-foot). You can control the real-time
application through MATLAB with the Simulink External Mode interface, or through a
custom Simulink Real-Time C API application.

Folders and Files

This folder contains the C source of a Win32 console application that serves as an
example for using the Simulink Real-Time C API. The sf_car_xpc files are in the
folder:

matlabroot\toolbox\rtw\targets\xpc\api

 Visual C Console Application

3-5

Filename Description

VisualBasic\Models\-

sf_car_xpc\sf_car_xpc

Simulink model for use with Simulink Real-Time

VisualBasic\Models\-

sf_car_xpc\sf_car_xpc.dlm

Real-time application compiled from Simulink
model

VisualC\sf_car_xpc.dsp Project file for API application
sf_car_xpc.c Source code for API application
VisualC\sf_car_xpc.exe Compiled API application
VisualBasic\Models\-

xpcapi.dll

Simulink Real-Time C API functions for supported
programming languages. Place this file in one of
the following, in order of preference:

• Folder from which the application is loaded
• Windows system folder

The Simulink Real-Time C API files are in the folder:

matlabroot\toolbox\rtw\targets\xpc\api

You will need the files listed below for creating your own API application with Microsoft
Visual C++.

Filename Description

xpcapi.h Mapping of data types between Simulink Real-Time C API
and Visual C

xpcapiconst.h Symbolic constants for using scope, communication, and data-
logging functions

xpcinitfree.c C functions to upload API from xpcapi.dll
xpcapi.dll Simulink Real-Time C API functions for supported

programming languages

Building the Simulink Real-Time Application

These tutorials use the prebuilt Simulink Real-Time application:

matlabroot\toolbox\rtw\targets\

xpc\api\VisualC\sf_car_xpc.dlm

3 Simulink Real-Time API for C

3-6

You can rebuild this application for your example:

1 Create a new folder under your MathWorks® folder. For example,

D:\mwd\sf_car_xpc2

2 Create a Simulink model and save to this folder. For example,

sf_car_xpc2

3 Build the real-time application with Simulink Coder™ and Microsoft Visual C++.
The real-time application file sf_car_xpc2.dlm is created.

Using Another C/C++ Compiler

These tutorials describe how to create and build C applications using Microsoft Visual C
++. However, to build a Simulink Real-Time C API application, you can use other C/C++
compilers, provided they are capable of generating a Win32 application. You will need to
link and compile the Simulink Real-Time C API application along with xpcinitfree.c
to generate the executable. The file xpcinitfree.c contains the definitions for the files
in the Simulink Real-Time C API and is located:

matlabroot\toolbox\rtw\targets\xpc\api

Creating a Visual C Application

This tutorial describes how to create a Visual C application. It is assumed that you know
how to write C applications. Of particular note when writing Simulink Real-Time C API
applications,

• Call the function xPCInitAPI at the start of the application to load the functions.
• Call the function xPCFreeAPI at the end of the application to free the memory

allocated to the functions.

To create a C application with a program such as Microsoft Visual C++,

1 From the previous tutorial, change folder to the new folder. This is your working
folder. For example,

D:\mwd\sf_car_xpc2

2 Copy the files xpcapi.h, xpcapi.dll, xpcapiconst.h, and xpcintfree.c to the
working folder. For example,

D:\mwd\sf_car_xpc2

 Visual C Console Application

3-7

3 Click the Start button, choose the All Programs option, and choose the Microsoft
Visual C++ entry. Select the Microsoft Visual C++ option.

The Microsoft Visual C++ application is displayed.
4 From the File menu, click New.
5 At the New dialog box, click the File tab.
6 In the left pane, select C++ Source File. In the right, enter the name of the file. For

example, sf_car_xpc.c. Select the folder. For example, C:\mwd\sf_car_xpc2.
7 Click OK to create this file.
8 Enter your code in this file. For example, you can enter the contents of

sf_xpc_car.c into this file.
9 From the File menu, click New.
10 At the New dialog box, click the Projects tab.
11 In the left pane, select Win32 Console Application. On the right, enter the name

of the project. For example, sf_car_xpc. Select the working folder from step 1. For
example, C:\mwd\sf_car_xpc2.

12 To create the project, click OK.

A Win32 Console Application dialog box is displayed.
13 To create an empty project, select An empty project.
14 Click Finish.
15 To confirm the creation of an empty project, click OK at the following dialog box.
16 To add the C file you created in step 7, from the Project menu, select the Add to

Project option and select Files.
17 Browse for the C file you created in step 7. For example,

D:\mwd\sf_car_xpc2\sf_car_xpc.c

Click OK.
18 Browse for the xpcinitfree.c file. For example, D:\mwd\xpcinitfree.c. Click

OK.

Note: The code for linking in the functions in xpcapi.dll is in the file
xpcinitfree.c. You must compile and link xpcinitfree.c with your custom
application for it to load xpcapi.dll at execution time.

3 Simulink Real-Time API for C

3-8

19 If you did not copy the files xpcapi.h, xpcapi.dll, and xpcapiconst.h into the
working or project folder, you should either copy them now, or also add these files to
the project.

20 From the File menu, click Save Workspace.

When you are ready to build your C application, go to “Building a Visual C Application”
on page 3-8.

Placing the Real-Time Application File in a Different Folder

The sf_car_xpc.c file assumes that the Simulink Real-Time application file
sf_car_xpc.dlm is in the same folder as sf_car_xpc.c. If you move that real-time
application file (sf_car_xpc.dlm) to a new location, change the path to this file in the
API application (sf_car_xpc.c) and recompile the API application. The relevant line in
sf_car_xpc.c is in the function main(), and looks like this:

xPCLoadApp(port, ".", "sf_car_xpc"); checkError("LoadApp: ");

The second argument (".") in the call to xPCLoadApp is the path to sf_car_xpc.dlm.
The "." indicates that the files sf_car_xpc.dlm and sf_car_xpc.c are in the same
folder. If you move the real-time application, enter its new path and rebuild the Simulink
Real-Time C API application.

Building a Visual C Application

This tutorial describes how to build the Visual C application from the previous tutorial,
or to rebuild the example executable sf_car_xpc.exe, using Microsoft Visual C++:

1 To build your own application using the Simulink Real-Time C API, copy the files
xpcapi.h, xpcapi.dll, xpcapiconst.h, and xpcinitfree.c into the working or
project folder.

2 If Microsoft Visual C++ is not already running, click the Start button, choose the All
Programs option, and choose the Microsoft Visual C++ option.

3 From the File menu, click Open.

The Open dialog box is displayed.
4 Use the browser to select the project file for the application you want to build. For

example, sf_car_xpc.dsp.
5 If a corresponding workspace file (for example, sf_car_xpc.dsw) exists for that

project, a dialog box prompts you to open that workspace instead. Click OK.

 Visual C Console Application

3-9

6 Build the application for the project. From the Build menu, select either the Build
project_name.exe or Rebuild All option.

Microsoft Visual C++ creates a file named project_name.exe, where project_name is
the name of the project.

When you are ready to run your Visual C Application, go to “Running a Simulink Real-
Time Visual C API Application” on page 3-9.

Running a Simulink Real-Time Visual C API Application

Before starting the API application sf_car_xpc.exe, verify the following:

• The file xpcapi.dll must either be in the same folder as the Simulink Real-Time C
API application executable, or it must be in the Windows system folder (typically C:
\windows\system or C:\winnt\system32) for global access. The Simulink Real-
Time C API application depends on this file, and will not run if the file is not found.
The same is true for other applications you write using Simulink Real-Time C API
functions.

• The compiled real-time application sf_car_xpc.dlm must be in the same folder as
the Simulink Real-Time C API executable. Do not move this file out of this folder.
Moving the file requires you to change the path to the real-time application in the API
application and recompile, as described in “Building a Visual C Application” on page
3-8.

Using the Simulink Real-Time C API Application

To run a Simulink Real-Time C API application, you must have a working target
computer running at least Simulink Real-Time Version 2.0 (Release 13).

This tutorial assumes that you are using the Simulink Real-Time C API application
sf_car_xpc.exe that comes with Simulink Real-Time. In turn, sf_car_xpc.exe
expects that the Simulink Real-Time application is sf_car_xpc.dlm.

If you are going to run a version of sf_car_xpc.exe that you compiled yourself
using the sf_car_xpc.c code that comes with Simulink Real-Time, you can run that
application instead. Verify the following files are in the same folder:

• sf_car_xpc.exe, the Simulink Real-Time C API executable
• sf_car_xpc.dlm, the Simulink Real-Time application to be loaded to the target

computer

3 Simulink Real-Time API for C

3-10

• xpcapi.dll, the Simulink Real-Time C API dynamic link library

If you copy this file to the Windows system folder, you do not need to provide this file
in the same folder.

How to Run the sf_car_xpc Executable

1 Create a Simulink Real-Time boot disk with a serial or Ethernet link. If you use a
serial link, set the baud rate to 115200. Otherwise, create the boot disk as directed
in Simulink Real-Time Getting Started.

2 Start the target computer with the Simulink Real-Time boot disk.

The target computer displays messages like the following in the top rightmost
message area.

System: Host-Target Interface is RS232 (COM1/2)

or

System: Host-Target Interface is TCP/IP (Ethernet)

3 If you have downloaded real-time applications to the target computer through
MATLAB, in the MATLAB window, type

close(slrt)

This command disconnects MATLAB from the target computer and leaves the target
computer ready to connect to another client.

4 On the development computer, open a DOS window. Change folder to:

C:\matlabroot\toolbox\rtw\targets\xpc\api\VisualC

If you are running your own version of sf_car_xpc.exe, change to the folder that
contains the executable and Simulink Real-Time application. For example,

D:\mwd\sf_car_xpc2

5 From that DOS window, enter the command to start the example application on
the development computer and download the real-time application to the target
computer.

The syntax for the example command is

sf_car_xpc {-t IpAddress:IpPort|-c COMport}

 Visual C Console Application

3-11

If you set up the Simulink Real-Time boot disk to use TCP/IP, then give the target
computer's IP address and IP port as arguments to sf_car_xpc, along with the
option -t. For example, at the DOS prompt, type

sf_car_xpc -t 192.168.0.1:22222

If you set up the Simulink Real-Time boot disk to use RS-232, give the serial port
number as a command-line option. Note that indexing of serial ports starts from
0 instead of 1. For example, if you are using a serial link from COM port 1 on the
development computer, type

 sf_car_xpc -c 0

On the development computer, the example application displays the following
message:

* Simulink Real-Time API Demo: sf_car_xpc. *

* *

* Copyright (c) 2000 The MathWorks, Inc. All Rights Reserved. *

Application sf_car_xpc loaded. SampleTime 0.001 StopTime: -1

R Br Th G VehSpeed VehRPM

- ---- -- - ---------- ---------

N 0 0 0 0.000 1000.000

The relevant line here is the last one, which displays the status of the application.
The headings are as follows:

R The status of the real-time application: R if running, N if stopped
Br The brake torque; legal values range from 0 to 4000
Th The throttle as a percentage (0 - 100) of the total
G Gear the vehicle is in (ranges between 1 and 4)
VehSpeed Speed of the vehicle in miles per hour
VehRPM Revolutions per minute of the vehicle engine (0 to 6000)

From this screen, various keystrokes control the real-time application. The following
list summarizes these keys:

3 Simulink Real-Time API for C

3-12

Key Action

s Start or stop the application, depending on whether the
application is active or not.

T Increase the throttle by 1 (does not go above 100).
t Decrease the throttle by 1 (does not go below 0).
B Increase the brake value by 20 (does not go above 4000).
b Decrease the brake value by 20 (does not go below 0).
Q or Ctrl+C Quit the application.

Note: Note that a positive value for the brake automatically sets the throttle value to
0, and a positive value for the throttle automatically sets the brake value to 0.

The target computer displays the following messages and three scopes.

 Visual C Console Application

3-13

6 Hold down the Shift key and hold down T until the value of Th reaches 100.
7 Press s to start the application.

3 Simulink Real-Time API for C

3-14

In Scope 1, S1 shows the throttle rising to a maximum value of 100 and the vehicle
speed S13 gradually increasing. In scope 2, S4 shows the vehicle RPM. Notice the
changes in the vehicle RPM as the gears shift from first to fourth gear as displayed
in the numerical Scope 3.

8 When you are done testing the example application, type Q or Ctrl+C.

The example application is disconnected from the target computer, so you can
reconnect to MATLAB.

 Visual C Console Application

3-15

C Code for sf_car_xpc.c

This section contains the C code for the sf_car_xpc.c application:
/* File: sf_car_xpc.c

 * Abstract: Demonstrates the use of the Simulink Real-Time C-API in Human-Machine

 * interaction. This file generates a Win32 Console application,

 * which when invoked loads the sf_car_xpc.dlm compiled application

 * on to the Simulink Real-Time PC.

 *

 * To build the executable, use the Visual C/C++ project

 * sf_car_xpc.dsp.

 *

 * Copyright 2000-2004 The MathWorks, Inc.

 */

/* Standard include files */

#include <stdio.h>

#include <stdlib.h>

#include <limits.h>

#include <ctype.h>

#include <conio.h>

#include <windows.h>

/* Simulink Real-Time C-API specific includes */

#include "xpcapi.h"

#include "xpcapiconst.h"

#define SERIAL 0

#define TCPIP 1

/* max and min are defined by some compilers, so we wrap them in #ifndef's */

#ifndef max

#define max(a, b) (((a) > (b)) ? (a) : (b))

#endif

#ifndef min

#define min(a, b) (((a) < (b)) ? (a) : (b))

#endif

/* Global Variables */

int mode = TCPIP, comPort = 0;

int port;

int thrPID, brakePID, rpmSID, speedSID, gearSID;

char *ipAddress, *ipPort, *pathToApp = NULL;

/* Function prototypes */

double getParam(int parIdx);

void setParam(int parIdx, double parValue);

void findParam(char *block, char *param, int *id);

void findSignal(char *sig, int *id);

void Usage(void);

void cleanUp(void);

void checkError(char *str);

void processKeys(void);

3 Simulink Real-Time API for C

3-16

void parseArgs(int argc, char *argv[]);

int str2Int(char *str);

/* Function: main ==

 * Abstract: Main function for the sf_car_xpc demo */

int main(int argc, char *argv[]) {

 printf("\n"

 "*---*\n"

 "* Simulink Real-Time API Demo: sf_car_xpc. *\n"

 "* *\n"

 "* Copyright (c) 2000 The MathWorks, Inc. All Rights Reserved. *\n"

 "*---*\n"

 "\n");

 parseArgs(argc, argv);

 atexit(cleanUp);

 /* Initialize the API */

 if (xPCInitAPI()) {

 fprintf(stderr, "Could not load api\n");

 return -1;

 }

 if (mode == SERIAL)

 port = xPCOpenSerialPort(comPort, 0);

 else if (mode == TCPIP)

 port = xPCOpenTcpIpPort(ipAddress, ipPort);

 else {

 fprintf(stderr, "Invalid communication mode\n");

 exit(EXIT_FAILURE);

 }

 checkError("PortOpen: ");

 xPCLoadApp(port, ".", "sf_car_xpc"); checkError("LoadApp: ");

 printf("Application sf_car_xpc loaded, SampleTime: %g StopTime: %g\n\n",

 xPCGetSampleTime(port), xPCGetStopTime(port));

 checkError(NULL);

 findParam("Throttle", "Value", &thrPID);

 findParam("Brake", "Value", &brakePID);

 findSignal("Engine/rpm", &rpmSID);

 findSignal("Vehicle/mph", &speedSID);

 findSignal("shift_logic/p1", &gearSID);

 processKeys(); /* Heart of the application */

 if (xPCIsAppRunning(port)) {

 xPCStopApp(port);

 }

 return 0;

} /* end main() */

/* Function: processKeys ===

 * Abstract: This function reads and processes the keystrokes typed by the

 * user and takes action based on them. This function runs for most

 Visual C Console Application

3-17

 * of the program life. */

void processKeys(void) {

 int c = 0;

 double throttle, brake;

 throttle = getParam(thrPID);

 brake = getParam(brakePID);

 fputs("\nR Br Th G VehSpeed VehRPM \n", stdout);

 fputs("- ---- -- - ---------- -------- \n", stdout);

 while (1) {

 if (_kbhit()) {

 c = _getch();

 switch (c) {

 case 't':

 if (throttle)

 setParam(thrPID, --throttle);

 break;

 case 'T':

 if (brake)

 setParam(brakePID, (brake = 0));

 if (throttle < 100)

 setParam(thrPID, ++throttle);

 break;

 case 'b':

 setParam(brakePID, (brake = max(brake - 200, 0)));

 if (brake)

 setParam(thrPID, (throttle = 0));

 break;

 case 'B':

 if (throttle)

 setParam(thrPID, (throttle = 0));

 setParam(brakePID, (brake = min(brake + 200, 4000)));

 break;

 case 's':

 case 'S':

 if (xPCIsAppRunning(port)) {

 xPCStopApp(port); checkError(NULL);

 } else {

 xPCStartApp(port); checkError(NULL);

 }

 break;

 case 'q':

 case 'Q':

 return;

 break;

 default:

 fputc(7, stderr);

 break;

 }

 } else {

 Sleep(50);

 }

 printf("\r%c %4d %3d %1d %10.3f %10.3f",

 (xPCIsAppRunning(port) ? 'Y' : 'N'),

 (int)brake, (int)throttle,

3 Simulink Real-Time API for C

3-18

 (int)xPCGetSignal(port, gearSID),

 xPCGetSignal(port, speedSID),

 xPCGetSignal(port, rpmSID));

 }

} /* end processKeys() */

/* Function: Usage ===

 * Abstract: Prints a simple usage message. */

void Usage(void) {

 fprintf(stdout,

 "Usage: sf_car_xpc {-t IPAddress:IpPort|-c num}\n\n"

 "E.g.: sf_car_xpc -t 192.168.0.1:22222\n"

 "E.g.: sf_car_xpc -c 1\n\n");

 return;

} /* end Usage() */

/* Function: str2Int ===

 * Abstract: Converts the supplied string str to an integer. Returns INT_MIN

 * if the string is invalid as an integer (e.g. "123string" is

 * invalid) or if the string is empty. */

int str2Int(char *str) {

 char *tmp;

 int tmpInt;

 tmpInt = (int)strtol(str, &tmp, 10);

 if (*str == '\0' || (*tmp != '\0')) {

 return INT_MIN;

 }

 return tmpInt;

} /* end str2Int */

/* Function: parseArgs ===

 * Abstract: Parses the command line arguments and sets the state of variables

 * based on the arguments. */

void parseArgs(int argc, char *argv[]) {

 if (argc != 3) {

 fprintf(stderr, "Insufficient command line arguments.\n\n");

 Usage();

 exit(EXIT_FAILURE);

 }

 if (strlen(argv[1]) != 2 ||

 strchr("-/", argv[1][0]) == NULL ||

 strchr("tTcC", argv[1][1]) == NULL) {

 fprintf(stderr, "Unrecognized Argument %s\n\n", argv[1]);

 Usage();

 exit(EXIT_FAILURE);

 }

 mode = tolower(argv[1][1]) == 'c' ? SERIAL : TCPIP;

 if (mode == SERIAL) {

 int tmpInt;

 if ((tmpInt = str2Int(argv[2])) > INT_MIN) {

 comPort = tmpInt;

 } else {

 fprintf(stderr, "Unrecognized argument %s\n", argv[2]);

 Usage();

 }

 Visual C Console Application

3-19

 } else {

 char *tmp;

 ipAddress = argv[2];

 if ((tmp = strchr(argv[2], ':')) == NULL) {

 /* memory need not be freed as it is allocated only once, will *

 * hang around till app ends. */

 if ((ipPort = malloc(6 * sizeof(char))) == NULL) {

 fprintf(stderr, "Unable to allocate memory");

 exit(EXIT_FAILURE);

 }

 strcpy(ipPort, "22222");

 } else {

 *tmp = '\0';

 ipPort = ++tmp;

 }

 }

 return;

} /* end parseArgs() */

/* Function: cleanUp ===

 * Abstract: Called at program termination to exit in a clean way. */

void cleanUp(void) {

 xPCClosePort(port);

 xPCFreeAPI();

 return;

} /* end cleanUp() */

/* Function: checkError ==

 * Abstract: Checks for error by calling xPCGetLastError(); if an error is

 * found, prints the error message and exits. */

void checkError(char *str) {

 char errMsg[80];

 if (xPCGetLastError()) {

 if (str != NULL)

 fputs(str, stderr);

 xPCErrorMsg(xPCGetLastError(), errMsg);

 fputs(errMsg, stderr);

 exit(EXIT_FAILURE);

 }

 return;

} /* end checkError() */

/* Function: findParam ===

 * Abstract: Wrapper function around the xPCGetParamIdx() API call. Also

 * checks to see if the parameter is not found, and exits in that

 * case. */

void findParam(char *block, char *param, int *id) {

 int tmp;

 tmp = xPCGetParamIdx(port, block, param);

 if (xPCGetLastError() || tmp == -1) {

 fprintf(stderr, "Param %s/%s not found\n", block, param);

 exit(EXIT_FAILURE);

 }

 *id = tmp;

 return;

3 Simulink Real-Time API for C

3-20

} /* end findParam() */

/* Function: findSignal ==

 * Abstract: Wrapper function around the xPCGetSignalIdx() API call. Also

 * checks to see if the signal is not found, and exits in that

 * case. */

void findSignal(char *sig, int *id) {

 int tmp;

 tmp = xPCGetSignalIdx(port, sig);

 if (xPCGetLastError() || tmp == -1) {

 fprintf(stderr, "Signal %s not found\n", sig);

 exit(EXIT_FAILURE);

 }

 *id = tmp;

 return;

} /* end findSignal() */

/* Function: getParam ==

 * Abstract: Wrapper function around the xPCGetParam() API call. Also checks

 * for error, and exits if an error is found. */

double getParam(int parIdx) {

 double p;

 xPCGetParam(port, parIdx, &p);

 checkError("GetParam: ");

 return p;

} /* end getParam() */

/* Function: setParam ==

 * Abstract: Wrapper function around the xPCSetParam() API call. Also checks

 * for error, and exits if an error is found. */

void setParam(int parIdx, double parValue) {

 xPCSetParam(port, parIdx, &parValue);

 checkError("SetParam: ");

 return;

} /* end setParam() */

/** EOF sf_car_xpc.c **/

4

Simulink Real-Time .NET API
Examples

4 Simulink Real-Time .NET API Examples

4-2

Visual Basic GUI Using .NET

To help you better understand and quickly begin to use .NET API functions to create
custom GUI applications, the Simulink Real-Time environment provides a number of API
examples and scripts in the matlabroot\toolbox\rtw\targets\xpc\api folder. This
topic briefly describes those examples and scripts.

The Microsoft Visual Basic .NET example illustrates how to create a custom GUI that
connects to a target computer with a downloaded real-time application. The solution file
for this example is located in

matlabroot\toolbox\rtw\targets\xpc\api\VBNET\SigsAndParamsDemo

• bin — Contains the executable for the Demo project and the xpcapi.dll file
• Demo.sln — Contains a solution file for the Demo project

The Demo.sln file contains the Visual Basic .NET files required to run the windows form
application. This example is a functional application that you can use as a template to
create your own custom GUIs.

In this section...

“Before Starting” on page 4-2
“Accessing the Demo Project Solution” on page 4-3
“Rebuilding the Demo Project Solution” on page 4-3
“Using the Demo Executable” on page 4-3

Before Starting

To use the Demo solution, you need

• A target computer running a current Simulink Real-Time kernel
• A development computer running the MATLAB software interface, connected to the

target computer via RS-232 or TCP/IP
• A real-time application loaded on the target computer

The Simulink Real-Time product ships with an executable version of the example. If you
want to rebuild the Demo solution, of if you want to write your own custom GUIs like this
one, you need Microsoft Visual Basic .NET installed on the development computer.

 Visual Basic GUI Using .NET

4-3

Note: The Simulink Real-Time software allows you to create applications, such as
GUIs, to interact with a target computer with .NET API functions. “Visual Basic GUI
Using .NET” on page 4-2 describes this in detail.

Accessing the Demo Project Solution

To access the Demo solution,

1 Copy the contents of the VBNET folder to a writable folder of your choice.
2 Change folder to the one that contains your copy of the Demo solution.
3 Double-click demo.sln.

The Microsoft Development Environment for Visual Basic application starts.
4 In the Solution Explorer pane, double-click Form1.vb to display the Demo solution

form.

The form is displayed. You can inspect the layout of the example.
5 To inspect the form code, select the View menu Code option.

The Visual Basic code for the form is displayed.

Rebuilding the Demo Project Solution

To rebuild the Demo solution,

1 Double-click demo.sln.

The Microsoft Development Environment for Visual Basic application starts.
2 Select the Build menu Build Solution option.

Using the Demo Executable

To use the Demo solution executable,

1 Change folder to the one that contains your copy of the Demo solution.
2 Change folder to the bin folder.
3 Double-click Demo1.exe.

4 Simulink Real-Time .NET API Examples

4-4

The GUI is displayed.

5

Simulink Real-Time API Reference for
Microsoft .NET Framework

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-2

xPCFileScopeCollection.Add
Create xPCFileScope object with next available scope ID as key

Syntax

public xPCFileScope Add()

public xPCFileScope Add(int ID)

public IList<xPCFileScope> Add(int[] arrayOfIDs)

IList

Description

Class: xPCFileScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCFileScope Add() creates xPCFileScope object with the next available
scope ID as key. It then adds xPCFileScope object to xPCFileScopeCollection object.

public xPCFileScope Add(int ID) creates xPCFileScope object with ID as key. ID
is 32-bit integer that specifies an ID for the scope object.

public IList<xPCFileScope> Add(int[] arrayOfIDs) creates an IList of
xPCFileScope objects with an array of IDs as keys. arrayOfIDs is an array of 32-bit
integers that specifies an array of IDs for scope objects.

 xPCFileScopeSignalCollection.Add

5-3

xPCFileScopeSignalCollection.Add
Add signals to file scope

Syntax

public xPCFileScopeSignal Add(xPCSignal signal)

public xPCFileScopeSignal Add(string blkPath)

public xPCFileScopeSignal Add(int sigId)

public IList<xPCFileScopeSignal> Add(int[] sigIds)

Description

Class: xPCFileScopeSignalCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCFileScopeSignal Add(xPCSignal signal) adds signals to the file
scope. It creates an xPCFileScopeSignal object with signal. signal is the xPCSignal
object that represents the actual signal. This method returns a file scope signal object of
type xPCFileScopeSignal.

public xPCFileScopeSignal Add(string blkPath) adds signal to the file scope.
It creates an xPCFileScopeSignal object that blkPath specifies. blkPath is a string that
specifies the signal name (block path). This method returns a file scope signal object of
type xPCFileScopeSignal.

public xPCFileScopeSignal Add(int sigId) adds signals to the file scope. It
creates an xPCFileScopeSignal object specified with sigId. sigId is a 32-bit integer
that represents the actual signal. This method returns a file scope signal object of type
xPCFileScopeSignal.

public IList<xPCFileScopeSignal> Add(int[] sigIds) adds signals to the file
scope. It creates an IList of xPCFileScopeSignal objects, one for each signal in the array

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-4

of IDs. sigIds is an array of 32-bit integers that specifies an array of IDs that represent
the actual signals. This method returns an ILIST of xPCFileScopeSignal objects.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

 xPCHostScopeCollection.Add

5-5

xPCHostScopeCollection.Add
Create xPCHostScope object with next available scope ID as key

Syntax

public xPCHostScope Add()

public xPCHostScope Add(int ID)

public IList<xPCHostScope> Add(int[] arrayOfIDs)

Description

Class: xPCHostScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCHostScope Add() creates xPCHostScope object with the next available
scope ID as key. It then adds an xPCHostScope object to xPCHostScopeCollection object.
This method returns an xPCHostScopeObject object.

public xPCHostScope Add(int ID) creates xPCHostScope object with ID as key.
ID is 32-bit integer that specifies an ID for the scope object. This method returns an
xPCHostScopeObject object.

public IList<xPCHostScope> Add(int[] arrayOfIDs) creates an ILIST of
xPCHostScope objects with an array of IDs as keys. arrayOfIDs is an array of 32-bit
integers that specifies an array of IDs for scope objects.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-6

xPCHostScopeSignalCollection.Add
Add signals to host scope

Syntax

public xPCHostScopeSignal Add(xPCSignal signal)

public xPCHostScopeSignal Add(string blkpath)

public xPCHostScopeSignal Add(int sigId)

public IList<xPCHostScopeSignal> Add(int[] sigIds)

Description

Class: xPCHostScopeSignalCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCHostScopeSignal Add(xPCSignal signal) adds signals to the host
scope. It creates xPCHostScopeSignal object with signal. signal is the xPCSignal
object that represents the actual signal. This method returns an xPCHostScopeSignal
object.

public xPCHostScopeSignal Add(string blkpath) adds signal to the host scope.
It creates an xPCHostScopeSignal object that blkPath specifies. blkPath is a string
that specifies the signal name (block path). This method returns a host scope signal
object of type xPCHostScopeSignal.

public xPCHostScopeSignal Add(int sigId) adds signals to the host scope. It
creates an xPCHostScopeSignal object specified with sigId. sigId is a 32-bit integer
that represents the actual signal. This method returns a host scope signal object of type
xPCHostScopeSignal.

public IList<xPCHostScopeSignal> Add(int[] sigIds) adds signals to the host
scope. It creates an ILIST of xPCHostScopeSignal objects, one for each signal in the array

 xPCHostScopeSignalCollection.Add

5-7

of IDs. sigIds is an array of 32-bit integers that specifies an array of IDs that represent
the actual signals. This method returns an ILIST of xPCHostScopeSignal objects.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-8

xPCTargetScopeCollection.Add
Create xPCTargetScope object

Syntax

public xPCTargetScope Add()

public xPCTargetScope Add(int ID)

public IList<xPCTargetScope> Add(int[] arrayOfIDs)

Description

Class: xPCTargetScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCTargetScope Add() creates xPCTargetScope object with
the next available scope ID as key. It then adds xPCTargetScope object to
xPCTargetScopeCollection object. This method returns an xPCTargetScope object.

public xPCTargetScope Add(int ID) creates xPCTargetScope object with ID as
key. ID is 32-bit integer that specifies an ID for the scope object. This method returns an
xPCTargetScope object.

public IList<xPCTargetScope> Add(int[] arrayOfIDs) creates an ILIST of
xPCTargetScope objects with an array of IDs as keys. arrayOfIDs is an array of 32-bit
integers that specifies an array of IDs for scope objects. This method returns an ILIST of
xPCTargetScope objects.

 xPCTargetScopeSignalCollection.Add

5-9

xPCTargetScopeSignalCollection.Add
Create xPCTargetScopeSignal object

Syntax

public xPCTgtScopeSignal Add(xPCSignal signal)

public xPCTgtScopeSignal Add(string blkPath)

public xPCTgtScopeSignal Add(int sigId)

public IList<xPCTgtScopeSignal> Add(int[] sigIds)

Description

Class: xPCTargetScopeSignalCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCTgtScopeSignal Add(xPCSignal signal) creates
xPCTargetScopeSignal object with signal. It then adds xPCTargetScopeSignal object
to xPCTargetScopeSignalCollection object. signal is of type xPCSignal. This method
returns an xPCTargetScopeSignal object.

public xPCTgtScopeSignal Add(string blkPath) adds signal to the target scope.
It creates an xPCTargetScopeSignal object that blkPath specifies. blkPath is a string
that specifies the signal name (block path). This method returns a target scope signal
object of type xPCTgtScopeSignal.

public xPCTgtScopeSignal Add(int sigId) creates xPCTargetScopeSignal
object with sigId. It then adds xPCTargetScopeSignal object to
xPCTargetScopeSignalCollection object. sigId is a 32-bit integer. This method returns
an xPCTargetScopeSignal object.

public IList<xPCTgtScopeSignal> Add(int[] sigIds) creates an ILIST of
xPCTargetScopeSignal objects with an array of IDs. sigIds is an array of 32-bit integers
that specifies an array of IDs for file scope signal objects.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-10

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

 xPCFileStream.Close

5-11

xPCFileStream.Close
Close current stream

Syntax

public void Close()

Description

Class: xPCFileStream Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Close() close the current stream and releases the resources (such as file
handles) associated with it.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-12

xPCTargetPC.Connect
Establish connection to target computer

Syntax

public void Connect()

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Connect() establishes a connection to a remote target computer.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

 xPCTargetPC.ConnectAsync

5-13

xPCTargetPC.ConnectAsync
Asynchronous request for target computer connection

Syntax

public void ConnectAsync()

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void ConnectAsync() begins an asynchronous request for a target computer
connection.

Exception

Exception Condition

InvalidOperation-

Exception

When another thread uses this method.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-14

xPCTargetPC.ConnectCompleted
Event when xPCTargetPC.ConnectAsync is complete

Syntax

public event ConnectCompleted ConnectCompleted

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event ConnectCompleted ConnectCompleted occurs when an
asynchronous connect operation is complete.

 xPCTargetPC.Connected

5-15

xPCTargetPC.Connected
Event after xPCTargetPC.Connect is complete

Syntax

public event EventHandler Connected

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Connected occurs after a connect operation is
complete.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-16

xPCTargetPC.Connecting
Event before xPCTargetPC.Connect starts

Syntax

public event EventHandler Connecting

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Connecting occurs before connect operation starts.

 xPCFileInfo.CopyToHost

5-17

xPCFileInfo.CopyToHost
Copy file from target computer file system to development computer file system

Syntax
public FileInfo CopyToHost(string HostDestFileName)

Description
Class: xPCFileInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public FileInfo CopyToHost(string HostDestFileName) copies file,
HostDestFileName, from target computer file system to new location on development
computer file system. HostDestFileName is a string that specifies the full path name
for the file.

Exception

Exception Condition

ArgumentException HostDestFileName is empty, contains only white spaces,
or contains invalid characters.

ArgumentNullException HostDestFileName is NULL reference.
NotSupportedException HostDestFileName contains a colon (:) in the middle of

the string.
PathTooLongException The specified path, file name, or both in

HostDestFileName exceed the system-defined maximum
length. For example, on Windows platforms, path names
must be less than 248 characters. File names must be less
than 260 characters.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-18

Exception Condition

SecurityException Caller does not have required permission.
UnauthorizedAccess-

Exception

System does not allow access to HostDestFileName.

xPCException When problem occurs, query xPCException object
Reason property.

 xPCFileInfo.Create

5-19

xPCFileInfo.Create
Create file in specified path

Syntax

public xPCFileStream Create()

Description

Class: xPCFileInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCFileStream Create() create file in specified path.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-20

xPCFileSystem.Create
Create folder

Syntax

public xPCDirectoryInfo CreateDirectory(string path)

Description

Class: xPCFileSystem Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCDirectoryInfo CreateDirectory(string path) creates folder on the
target computer file system. path is a string that specifies the full path name for the new
folder. This method returns an xPCDirectoryInfo object.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

 xPCDirectoryInfo.Create

5-21

xPCDirectoryInfo.Create
Create folder

Syntax

public void Create()

Description

Class: xPCDirectoryInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Create() creates a folder.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-22

xPCFileSystemInfo.Delete
Delete current file or folder

Syntax

public abstract void Delete()

Description

Class: xPCFileSystemInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public abstract void Delete() deletes the current file or folder on the target
computer file system.

 xPCDirectoryInfo.Delete

5-23

xPCDirectoryInfo.Delete
Delete empty xPCDirectoryInfo object

Syntax

public override void Delete()

Description

Class: xPCDirectoryInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public override void Delete() deletes an empty xPCDirectoryInfo object.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-24

xPCFileInfo.Delete
Permanently delete file on target computer

Syntax

public override void Delete()

Description

Class: xPCFileInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public override void Delete() permanently deletes files from the target
computer.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

 xPCTargetPC.Disconnect

5-25

xPCTargetPC.Disconnect
Disconnect from target computer

Syntax

public void Disconnect()

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Disconnect() closes the connection to the target computer.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-26

xPCTargetPC.DisconnectAsync
Asynchronous request to disconnect from target computer

Syntax

public void DisconnectAsync()

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void DisconnectAsync() begins an asynchronous request to disconnect from
the target computer.

Exception

Exception Condition

InvalidOperation-

Exception

When another thread uses this method.

 xPCTargetPC.DisconnectCompleted

5-27

xPCTargetPC.DisconnectCompleted
Event when xPCTargetPC.DisconnectAsync is complete

Syntax

public event DisconnectCompletedEventHandler DisconnectCompleted

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event DisconnectCompletedEventHandler DisconnectCompleted

occurs when an asynchronous disconnect operation is complete.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-28

xPCTargetPC.Disconnected
Event after xPCTargetPC.Disconnect is complete

Syntax

public event EventHandler Disconnected

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Disconnected occurs after a disconnect operation is
complete.

 xPCTargetPC.Disconnecting

5-29

xPCTargetPC.Disconnecting
Event before xPCTargetPC.Disconnect starts

Syntax

public event EventHandler Disconnecting

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Disconnecting occurs before a disconnect operation
starts.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-30

xPCTargetPC.Dispose
Clean up used resources

Syntax

public void Dispose()

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Dispose() cleans up used resources.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

 xPCTargetPC.Disposed

5-31

xPCTargetPC.Disposed
Event after xPCTargetPC.Dispose is complete

Syntax

public event EventHandler Disposed

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Disposed occurs after the disposal of used resources is
complete.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-32

xPCFileSystem.GetCurrentDirectory
Current working folder for real-time application

Syntax

public string GetCurrentDirectory()

Description

Class: xPCFileSystem Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public string GetCurrentDirectory() gets the current working folder of the real-
time application. This method returns the current working folder name as a string.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

 xPCDataLoggingObject.GetData

5-33

xPCDataLoggingObject.GetData
Copy signal data from target computer

Syntax

public double[] GetData()

Description

Class: xPCDataLoggingObject Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public double[] GetData() copies logged data from the target computer to the
development computer.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-34

xPCDataFileScSignalObject.GetData
Copy file scope signal data from target computer

Syntax

public double[] GetData()

Description

Class: xPCDataFileScSignalObject Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public double[] GetData() copies logged file scope signal data from the target
computer to the development computer.

 xPCDataHostScSignalObject.GetData

5-35

xPCDataHostScSignalObject.GetData
Copy host scope signal data from target computer

Syntax

public double[] GetData()

Description

Class: xPCDataHostScSignalObject Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public double[] GetData() copies logged host scope signal data from the target
computer to the development computer.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-36

xPCDataLoggingObject.GetDataAsync
Asynchronously copy signal data from target computer

Syntax

public void GetDataAsync()

public void GetDataAsync(Object taskId)

Description

Class: xPCDataLoggingObject Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void GetDataAsync() asynchronously copies the logged data from the target
computer without blocking the calling thread.

public void GetDataAsync(Object taskId) receives taskId (user-defined object)
when the method copies the logged data.

 xPCDataFileScSignalObject.GetDataAsync

5-37

xPCDataFileScSignalObject.GetDataAsync
Asynchronously copy file scope signal data from target computer

Syntax

public void GetDataAsync()

public void GetDataAsync(Object taskId)

Description

Class: xPCDataFileScSignalObject Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void GetDataAsync() asynchronously copies the file scope signal logged data
from the target computer without blocking the calling thread.

public void GetDataAsync(Object taskId) receives taskId (user-defined object)
when the method copies the file scope signal logged data. In other words, when the
asynchronous operation is complete.

Exception

Exception Condition

InvalidOperation-

Exception

When another thread uses this method.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-38

xPCDataHostScSignalObject.GetDataAsync
Asynchronously copy host scope signal data from target computer

Syntax

public void GetDataAsync()

public void GetDataAsync(Object taskId)

Description

Class: xPCDataHostScSignalObject Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void GetDataAsync() asynchronously copies the host scope signal logged
data from the target computer without blocking the calling thread.

public void GetDataAsync(Object taskId) receives taskId (user-defined object)
when the method copies the host scope signal logged data. In other words, when the
asynchronous operation is complete.

Exception

Exception Condition

InvalidOperation-

Exception

When another thread uses this method.

 xPCDataLoggingObject.GetDataCompleted

5-39

xPCDataLoggingObject.GetDataCompleted
Event when xPCDataLoggingObject.GetDataAsync is complete

Syntax

public event GetDataCompletedEventHandler GetDataCompleted

Description

Class: xPCDataLoggingObject Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event GetDataCompletedEventHandler GetDataCompleted occurs when
the asynchronous copying of logged data is complete.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-40

xPCDataFileScSignalObject.GetDataCompleted
Event when xPCDataFileScSignalObject.GetDataAsync is complete

Syntax

public event GetFileScSignalDataCompletedEventHandler

GetDataCompleted

Description

Class: xPCDataFileScSignalObject Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event GetFileScSignalDataCompletedEventHandler

GetDataCompleted occurs when the asynchronous copying of file scope signal logged
data is complete.

 xPCDataHostScSignalObject.GetDataCompleted

5-41

xPCDataHostScSignalObject.GetDataCompleted
Event when xPCDataHostScSignalObject.GetDataAsync is complete

Syntax

public event GetDataCompletedEventHandler GetDataCompleted

Description

Class: xPCDataHostScSignalObject Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event GetDataCompletedEventHandler GetDataCompleted occurs when
the asynchronous copying of host scope signal logged data is complete.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-42

xPCDirectoryInfo.GetDirectories
Subfolders of current folder

Syntax

public xPCDirectoryInfo[] GetDirectories()

Description

Class: xPCDirectoryInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCDirectoryInfo[] GetDirectories() returns the subfolders of the
current folder. This method returns the list of subfolders as an xPCDirectoryInfo array.

 xPCFileSystem.GetDrives

5-43

xPCFileSystem.GetDrives
Drive names for logical drives on target computer

Syntax

public xPCDriveInfo[] GetDrives()

Description

Class: xPCFileSystem Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCDriveInfo[] GetDrives() retrieves the drive names of the logical drives
on the target computer. This method returns an xPCDriveInfo array.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-44

xPCDirectoryInfo.GetFiles
File list from current folder

Syntax

public xPCFileInfo[] GetFiles()

Description

Class: xPCDirectoryInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCFileInfo[] GetFiles() returns a file list from the current folder. This
method returns the list of files as an xPCFileInfo array.

 xPCDirectoryInfo.GetFileSystemInfos

5-45

xPCDirectoryInfo.GetFileSystemInfos
File system information for files and subfolders in folder

Syntax

public xPCFileSystemInfo[] GetFileSystemInfos()

Description

Class: xPCDirectoryInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCFileSystemInfo[] GetFileSystemInfos() returns an array of
strongly typed xPCFileSystemInfo entries. These entries represent the files and
subfolders in a folder.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-46

xPCParameter.GetParam
Get parameter values from target computer

Syntax

public double[] GetParam()

Description

Class: xPCParameter Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public double[] GetParam() gets parameter values from the target computer as an
array of doubles.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

 xPCParameter.GetParamAsync

5-47

xPCParameter.GetParamAsync
Asynchronous request to get parameter values from target computer

Syntax

public void GetParamAsync()

public void GetParamAsync(Object taskId)

Description

Class: xPCParameter Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void GetParamAsync() begins an asynchronous request to get parameter
values from the target computer. This method does not block the calling thread.

public void GetParamAsync(Object taskId) receives a user-defined object when
it completes its asynchronous request. taskId is a user-defined object that you can have
passed to the GetParamAsync method upon completion.

Exception

Exception Condition

InvalidOperation-

Exception

When another thread uses this method.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-48

xPCParameter.GetParamCompleted
Event when xPCParameter.GetParamAsync is complete

Description

Class: xPCParameter Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event GetParamCompletedEventHandler GetParamCompleted occurs
when an asynchronous get parameter operation is complete.

 xPCSignals.GetSignals

5-49

xPCSignals.GetSignals
List of xPCSignal objects specified by array of signal identifiers

Syntax

public IList<xPCSignal> GetSignals(string[] arrayofBlockPath)

public IList<xPCSignal> GetSignals(int[] arrayOfSigId)

Description

Class: xPCSignals Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public IList<xPCSignal> GetSignals(string[] arrayofBlockPath) returns
list of xPCSignal objects specified by array of signal identifiers. This method creates an
ILIST of xPCSignal objects with an array of blockpaths. arrayofBlockPath is an
array of strings that contains the full block path names to signals.

public IList<xPCSignal> GetSignals(int[] arrayOfSigId) returns the list
of xPCSignal objects specified by an array of signal identifiers. This method creates an
ILIST of xPCSignal objects with an array of signal identifiers. arrayOfSigId is an array
of 32-bit integers that specifies an array of signal identifiers.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-50

xPCSignals.GetSignalsValue
Vector of signal values from array

Syntax

public double[] GetSignalsValue(int[] arrayOfSigId)

public double[] GetSignalsValue(IList<xPCSignals> arrayOfSigObjs)

Description

Class: xPCSignals Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public double[] GetSignalsValue(int[] arrayOfSigId) returns a vector of
signal values from an array containing its signal identifiers. arrayOfSigId is an array
of 32-bit signal identifiers. This method returns the vector as a double.

public double[] GetSignalsValue(IList<xPCSignals> arrayOfSigObjs)

returns a vector of signal values from an IList that contains xPCSignals objects. This
method returns the vector as a double.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

 xPCSignal.GetValue

5-51

xPCSignal.GetValue
Value of signal at moment of request

Syntax

public virtual double GetValue()

Description

Class: xPCSignal Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public virtual double GetValue() returns signal value at moment of request.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-52

xPCTargetPC.Load
Load real-time application onto target computer

Syntax

public xPCApplication Load()

public xPCApplication Load(string DLMFileName)

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCApplication Load() loads a real-time application (.dlm file) onto the
target computer. This method returns an xPCApplication object.

public xPCApplication Load(string DLMFileName) loads DLMFileName onto the
target computer. DLMFileName is a string that specifies the full path name to the real-
time application to load on the target computer. This method returns an xPCApplication
object.

Exception

Exception Condition

ArgumentException DLMFileName is empty, contains only white spaces, or
contains invalid characters.

xPCException When problem occurs, query xPCException object Reason
property.

 xPCTargetPC.Load

5-53

Exception Condition

InvalidOperation-

Exception

DLMFileName is a NULL reference (empty in Visual
Basic) or an empty string.

NotSupportedException DLMFileName contains a colon (:) in the middle of the
string.

PathTooLongException The specified path, file name, or both in DLMFileName
exceed the system-defined maximum length. For example,
on Windows platforms, path names must be less than 248
characters. File names must be less than 260 characters.

SecurityException Caller does not have required permission.
UnauthorizedAccess-

Exception

System does not allow access to DLMFileName.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-54

xPCTargetPC.LoadAsync
Asynchronous request to load real-time application onto target computer

Syntax

public void LoadAsync()

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void LoadAsync() begins an asynchronous request to load a real-time
application onto a target computer.

Exception

Exception Condition

InvalidOperation-

Exception

When another thread uses this method.

 xPCTargetPC.LoadCompleted

5-55

xPCTargetPC.LoadCompleted
Event when xPCTargetPC.LoadAsync is complete

Syntax

public event LoadCompletedEventHandler LoadCompleted

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event LoadCompletedEventHandler LoadCompleted occurs when an
asynchronous load operation is complete.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-56

xPCTargetPC.Loaded
Event after xPCTargetPC.Load is complete

Syntax

public event EventHandler Loaded

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Loaded occurs after real-time application onto the
target computer is complete.

 xPCTargetPC.Loading

5-57

xPCTargetPC.Loading
Event before xPCTargetPC.Load starts

Syntax

public event EventHandler Loading

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Loading occurs before the loading of the real-time
application starts on the target computer.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-58

xPCParameters.LoadParameterSet
Load parameter values for real-time application

Syntax

public void LoadParameterSet(string fileName)

Description

Class: xPCParameters Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void LoadParameterSet(string fileName) loads parameter values for
the real-time application in a file. fileName is a string that represents the file that
contains the parameter values to be loaded.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

 CancelPropertyNotificationEventArgs Class

5-59

CancelPropertyNotificationEventArgs Class
CancelPropertyNotification event data

Syntax

public class CancelPropertyNotificationEventArgs :

PropertyNotificationEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class CancelPropertyNotificationEventArgs :

PropertyNotificationEventArgs contains data returned from the event of cancelling
a property value change.

Properties

Properties C# Declaration Syntax Description

Cancel public bool Cancel {get;

set;}

Get or set value indicating
whether or not to cancel event.

NewValue public Object NewValue

{get;}

Get new value of property.

OldValue public Object OldValue

{get;}

Get old value of property.

PropertyName public virtual string

PropertyName {get;}

Get name of property that
changed.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-60

ConnectCompletedEventArgs Class
xPCTargetPC.ConnectCompleted event data

Syntax

public class ConnectCompletedEventArgs : AsyncCompletedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class ConnectCompletedEventArgs : AsyncCompletedEventArgs

contains data returned from the event of asynchronously connecting to the target
computer.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled

{get;}

Get value that indicates if an
asynchronous operation has
been cancelled.

Error public Exception Error

{get;}

Get value that indicates
which error occurred during
asynchronous operation.

UserState public Object UserState

{get;}

Get unique identifier for
asynchronous task.

 DisconnectCompletedEventArgs Class

5-61

DisconnectCompletedEventArgs Class
xPCTargetPC.DisconnectCompleted event data

Syntax

public class DisconnectCompletedEventArgs : AsyncCompletedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class DisconnectCompletedEventArgs : AsyncCompletedEventArgs

contains data returned from the event of asynchronously disconnecting from the target
computer.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled

{get;}

Get value that indicates if an
asynchronous operation has
been cancelled.

Error public Exception Error

{get;}

Get value that indicates
which error occurred during
asynchronous operation.

UserState public Object UserState

{get;}

Get unique identifier for
asynchronous task.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-62

GetDataCompletedEventArgs Class
GetDataCompleted event data

Syntax

public class GetDataCompletedEventArgs : AsyncCompletedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class GetDataCompletedEventArgs : AsyncCompletedEventArgs

contains data returned from the event of asynchronously completing a data access.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled

{get;}

Get value that indicates if an
asynchronous operation has
been cancelled.

Error public Exception Error

{get;}

Get value that indicates
which error occurred during
asynchronous operation.

State public Object State

{get;}

Optional. Get user-supplied
state object.

UserState public Object UserState

{get;}

Get unique identifier for
asynchronous task.

 GetFileScSignalDataObjectCompletedEventArgs Class

5-63

GetFileScSignalDataObjectCompletedEventArgs Class
xPCDataFileScSignalObject.GetDataCompleted event data

Syntax

public class GetFileScSignalDataObjectCompletedEventArgs :

GetDataCompletedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class GetFileScSignalDataObjectCompletedEventArgs :

GetDataCompletedEventArgs contains data returned from the event of completing an
asynchronous data access to a file scope signal object.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled

{get;}

Get value that indicates if an
asynchronous operation has
been cancelled.

Data public double[] Data

{get;}

Get the signal data collected by
file scope.

Error public Exception Error

{get;}

Get value that indicates
which error occurred during
asynchronous operation.

FileScopeSignalObject public bool

IsScopeSignal {get;}

Get reference to parent
xPCFileScopeSignal object

IsScopeSignal public bool

IsScopeSignal {get;}

Get if signal is a scope signal
(true) or a time signal (false).

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-64

Properties C# Declaration Syntax Description

State public Object State

{get;}

Optional. Get user-supplied
state object.

UserState public Object UserState

{get;}

Get unique identifier for
asynchronous task.

 GetHostScSignalDataObjectCompletedEventArgs Class

5-65

GetHostScSignalDataObjectCompletedEventArgs
Class
xPCDataHostScSignalObject.DataObjectCompleted event data

Syntax

public class GetHostScSignalDataObjectCompletedEventArgs :

GetDataCompletedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class GetHostScSignalDataObjectCompletedEventArgs :

GetDataCompletedEventArgs contains data returned by the event of completing an
asynchronous data access to a host scope signal object.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled

{get;}

Get value that indicates if an
asynchronous operation has
been cancelled.

Data public double[] Data

{get;}

Get the signal data collected by
host scope

Error public Exception Error

{get;}

Get value that indicates
which error occurred during
asynchronous operation.

IsScopeSignal public bool

IsScopeSignal {get;}

Get if signal is a scope signal
(true) or a time signal (false).

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-66

Properties C# Declaration Syntax Description

ScopeSignalObject public xPCScopeSignal

ScopeSignalObject {get;}

Get reference to parent
xPCHostScopeSignal object

State public Object State

{get;}

Optional. Get user-supplied
state object.

UserState public Object UserState

{get;}

Get unique identifier for
asynchronous task.

 GetLogDataCompletedEventArgs Class

5-67

GetLogDataCompletedEventArgs Class
xPCDataLoggingObject.GetDataCompleted event data

Syntax

public class GetLogDataCompletedEventArgs :

GetDataCompletedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class GetLogDataCompletedEventArgs :

GetDataCompletedEventArgs contains data returned by the event of completing an
asynchronous data access to a data logging object.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled

{get;}

Get value that indicates if an
asynchronous operation has
been cancelled.

Error public Exception Error

{get;}

Get value that indicates
which error occurred during
asynchronous operation.

Index public int Index {get;} Get log index.
LoggedData public double[]

LoggedData {get;}

Get logged data.

LogType public xPClogType

LogType {get;}

Get log type as xPClogType.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-68

Properties C# Declaration Syntax Description

State public Object State

{get;}

Optional. Get user-supplied
state object.

UserState public Object UserState

{get;}

Get unique identifier for
asynchronous task.

 GetParamCompletedEventArgs Class

5-69

GetParamCompletedEventArgs Class
xPCParameter.GetParamCompleted event data

Syntax

public class GetParamCompletedEventArgs : AsyncCompletedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class GetParamCompletedEventArgs : AsyncCompletedEventArgs

contains data returned by the event of completing an asynchronous parameter access.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled

{get;}

Get value that indicates if an
asynchronous operation has
been cancelled.

Error public Exception Error

{get;}

Get value that indicates
which error occurred during
asynchronous operation.

Result public double[] Result

{get;}

Get data values of the
xPCParameter object

UserState public Object UserState

{get;}

Get unique identifier for
asynchronous task.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-70

LoadCompletedEventArgs Class
xPCTargetPC.LoadCompleted event data

Syntax

public class LoadCompletedEventArgs : AsyncCompletedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class LoadCompletedEventArgs : AsyncCompletedEventArgs contains
data returned by the event of asynchronously loading a real-time application onto the
target computer.

Properties

Properties C# Declaration Syntax Description

Application public xPCApplication

Application {get;}

Get reference to xPCApplication
object.

Cancelled public bool Cancelled

{get;}

Get value that indicates if an
asynchronous operation has
been cancelled.

Error public Exception Error

{get;}

Get value that indicates
which error occurred during
asynchronous operation.

UserState public Object UserState

{get;}

Get unique identifier for
asynchronous task.

 PropertyNotificationEventArgs Class

5-71

PropertyNotificationEventArgs Class
PropertyNotification event data

Syntax

public class PropertyNotificationEventArgs :

PropertyChangedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class PropertyNotificationEventArgs :

PropertyChangedEventArgs contains data returned by the event of changing property
values.

Properties

Properties C# Declaration Syntax Description

NewValue public Object NewValue

{get;}

Get new value of property.

OldValue public Object OldValue

{get;}

Get old value of property.

PropertyName public virtual string

PropertyName {get;}

Get name of property that
changed.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-72

RebootCompletedEventArgs Class
xPCTargetPC.RebootCompleted event data

Syntax

public class RebootCompletedEventArgs : AsyncCompletedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class RebootCompletedEventArgs : AsyncCompletedEventArgs

contains data returned by the event of asynchronously restarting the target computer.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled

{get;}

Get value that indicates if an
asynchronous operation has
been cancelled.

Error public Exception Error

{get;}

Get value that indicates
which error occurred during
asynchronous operation.

UserState public Object UserState

{get;}

Get unique identifier for
asynchronous task.

 SetParamCompletedEventArgs Class

5-73

SetParamCompletedEventArgs Class
xPCParameter.SetParamCompleted event data

Syntax

public class SetParamCompletedEventArgs : AsyncCompletedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class SetParamCompletedEventArgs : AsyncCompletedEventArgs

contains data returned by the event of asynchronously setting a parameter value.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled

{get;}

Get value that indicates if an
asynchronous operation has
been cancelled.

Error public Exception Error

{get;}

Get value that indicates
which error occurred during
asynchronous operation.

NewValue public Object NewValue

{get;}

Get new value of property.

OldValue public Object OldValue

{get;}

Get old value of property.

UserState public Object UserState

{get;}

Get unique identifier for
asynchronous task.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-74

UnloadCompletedEventArgs Class
xPCTargetPC.UnloadCompleted event data

Syntax

public class UnloadCompletedEventArgs : AsyncCompletedEventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class UnloadCompletedEventArgs : AsyncCompletedEventArgs

contains data returned by the event of asynchronously unloading the real-time
application from the target computer.

Properties

Properties C# Declaration Syntax Description

Cancelled public bool Cancelled

{get;}

Get value that indicates if an
asynchronous operation has
been cancelled.

Error public Exception Error

{get;}

Get value that indicates
which error occurred during
asynchronous operation.

UserState public Object UserState

{get;}

Get unique identifier for
asynchronous task.

 xPCApplication Class

5-75

xPCApplication Class
Access to real-time application loaded on target computer

Syntax

public sealed class xPCApplication : xPCBaseNotification

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public sealed class xPCApplication : xPCBaseNotification initializes a
new instance of the xPCApplication class.

Methods

Method Description

xPCApplication.Start Start real-time application execution
xPCApplication.Stop Stop real-time application execution

Events

Events Description

xPCApplication.Started Event after xPCApplication.Start is complete
xPCApplication.Starting Event before xPCApplication.Start executes
xPCApplication.Stopped Event after xPCApplication.Stop is complete
xPCApplication.Stopping Event before xPCApplication.Stop executes

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-76

Properties
Properties C# Declaration Syntax Description Exception

CPUOverload public bool

CPUOverload {get;}

Get state of
CPUOverload.

xPCException —
When problem occurs,
query xPCException
object Reason property.

ExecTime public double

ExecTime {get;}

Get execution time. xPCException —
When problem occurs,
query xPCException
object Reason property.

Logger public

xPCAppLogger

Logger {get;}

Get reference to the
application logging
object.

MaximumTeT public double

MaximumTeT {get;}

Get the maximum
time. The first element
contains the maximum
TET number; the
second element
contains how long it
took to achieve the TET
time.

xPCException —
When problem occurs,
query xPCException
object Reason property.

MinimumTeT public double

MinimumTeT {get;}

Get the minimum
time. The first element
contains the minimum
TET number; the
second element
contains how long it
took to achieve the TET
time.

xPCException —
When problem occurs,
query xPCException
object Reason property.

Name public string Name

{get;}

Get the current name
of the loaded real-time
application

xPCException —
When problem occurs,
query xPCException
object Reason property.

Parameters public

xPCParameters

Parameters {get;}

Get reference to the
xPCParameters object.

 xPCApplication Class

5-77

Properties C# Declaration Syntax Description Exception

SampleTime public double

SampleTime {get;

set;}

Get or set Sample time xPCException —
When problem occurs,
query xPCException
object Reason property.

Scopes public xPCScopes

Scopes {get;}

Get collection of
scopes assigned to the
application

Signals public xPCSignals

Signals {get;}

Get reference to
xPCSignals object

Status public

xPCAppStatus

Status {get;}

Get simulation status.
See xPCAppStatus
Enumerated Data
Type.

xPCException —
When problem occurs,
query xPCException
object Reason property.

StopTime public double

StopTime {get;

set;}

Get and set stop time xPCException —
When problem occurs,
query xPCException
object Reason property.

Target public xPCTargetPC

Target {get;}

Get reference to parent
xPCTargetPC object.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-78

xPCAppLogger Class
Access to real-time application loggers

Syntax

public class xPCAppLogger : xPCApplicationObject

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCAppLogger : xPCApplicationObject initializes a new instance
of the xPCAppLogger class.

Properties

Properties C# Declaration Syntax Description

LogMode public xPCLogMode

LogMode {get; set;}

Control which data points to log.
See xPCLogMode Enumerated
Data Type.

LogModeValue public int LogModeValue

{get; set;}

Get or set the value-equidistant
logging. Set the value to the
difference in signal values.

MaxLogSamples public int MaxLogSamples

{get;}

Get maximum number of
samples that can be in log
buffer.

OutputLog public xPCOutputLogger

OutputLog {get;}

Return a reference to the
xPCOutputLogger object.

StateLog public xPCStateLogger

StateLog {get;}

Return a reference to the
xPCStateLogger object.

 xPCAppLogger Class

5-79

Properties C# Declaration Syntax Description

TETLog public xPCTETLogger

TETLog {get;}

Return a reference to the
xPCTETLogger object.

TimeLog public xPCTimeLogger

TimeLog {get;}

Return a reference to the
xPCTimeLogger object.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-80

xPCDataFileScSignalObject Class
Object that holds logged file scope signal data

Syntax

public class xPCDataFileScSignalObject : xPCFileScopeStream,

IxPCDataService

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCDataFileScSignalObject : xPCFileScopeStream,

IxPCDataService accesses an object that holds logged file scope signal data.

Methods

Method Description

xPCDataFileScSignalObject.GetDataCopy file scope signal data from target computer
xPCDataFileScSignalObject.GetDataAsyncAsynchronously copy file scope signal data from target computer

Events

Event Description

xPCDataFileScSignalObject.GetDataCompletedEvent when xPCDataFileScSignalObject.GetDataAsync is
complete

Properties

Property C# Declaration Syntax Description

ScopeSignal-

Object

public xPCFileScopeSignal

ScopeSignalObject {get;}

Get parent scope signal
xPCFileScopeSignal object.

 xPCDataHostScSignalObject Class

5-81

xPCDataHostScSignalObject Class

Object that holds logged host scope signal data

Syntax

public class xPCDataHostScSignalObject :

xPCApplicationNotficationObject, IxPCDataService,

IxPCDataServiceAsync

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCDataHostScSignalObject :

xPCApplicationNotficationObject, IxPCDataService,

IxPCDataServiceAsync accesses an object that holds logged host scope signal data.

Methods

Method Description

xPCDataHostScSignalObject.GetDataCopy host scope signal data from target computer
xPCDataHostScSignalObject.GetDataAsyncAsynchronously copy host scope signal data from target computer

Events

Event Description

xPCDataHostScSignalObject.GetDataCompletedEvent when xPCDataHostScSignalObject.GetDataAsync is
complete

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-82

Properties

Property C# Declaration Syntax Description

Decimation public int Decimation {get;

set;}

A number n, where every nth sample is
acquired in a scope window.

NumSamples public int NumSamples {get;

set;}

Get or set number of contiguous samples
captured during the acquisition of a
data package. If the scope stops before
capturing this number of samples, the
scope has the collected data up to the
end of data collection. It then has zeroes
for the remaining uncollected data. Note
what type of data you are collecting, it is
possible that your data contains zeroes.

For file scopes, this parameter works
with the autorestart setting. If
autorestart is enabled, the file scope
collects data up to NumSamples, then
starts over again, overwriting the buffer.
If autorestart is disabled, the file scope
collects data only up to NumSamples,
then stops.

ScopeSignal-

Object

public xPCHostScopeSignal

ScopeSignalObject {get;}

Get parent scope signal
xPCHostScopeSignal object.

Startindex public int StartIndex {get;

set;}

Get and set the index of the first sample
to retrieve from the log.

 xPCDataLoggingObject Class

5-83

xPCDataLoggingObject Class
Object that holds logged data

Syntax

public class xPCDataLoggingObject : xPCApplicationNotficationObject,

IxPCDataService, xPCDataServiceAsync

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCDataLoggingObject : xPCApplicationNotficationObject,

IxPCDataService, xPCDataServiceAsync accesses an object that holds logged data.

Methods

Method Description

xPCDataLoggingObject.GetDataCopy signal data from target computer
xPCDataLoggingObject.GetDataAsyncAsynchronously copy signal data from target computer

Events

Event Description

xPCDataLoggingObject.GetDataCompletedEvent when xPCDataLoggingObject.GetDataAsync is complete

Properties

Property C# Declaration Syntax Description

Decimation public int Decimation {get;

set;}

A number n, where every nth sample is
acquired in a scope window.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-84

Property C# Declaration Syntax Description

LogId public int LogId {get;}

NumSamples public int NumSamples {get;

set;}

Get or set number of contiguous samples
captured during the acquisition of a
data package. If the scope stops before
capturing this number of samples, the
scope has the collected data up to the
end of data collection. It then has zeroes
for the remaining uncollected data. Note
what type of data you are collecting, it is
possible that your data contains zeroes.

For file scopes, this parameter works
with the autorestart setting. If
autorestart is enabled, the file scope
collects data up to NumSamples, then
starts over again, overwriting the buffer.
If autorestart is disabled, the file scope
collects data only up to NumSamples,
then stops.

Startindex public int StartIndex {get;

set;}

Get and set the index of the first sample
to retrieve from the log.

 xPCDirectoryInfo Class

5-85

xPCDirectoryInfo Class

Access folders and subfolders of target computer file system

Syntax

public class xPCDirectoryInfo : xPCFileSystemInfo

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCDirectoryInfo : xPCFileSystemInfo accesses folders and
subfolders of target computer file system.

Constructor

Constructor Description

xPCDirectoryInfo Construct new instance of the xPCDirectoryInfo class on specified
path

Methods

Method Description

xPCDirectoryInfo.Create Create folder
xPCDirectoryInfo.Delete Delete empty xPCDirectoryInfo object
xPCDirectoryInfo.GetDirectoriesSubfolders of current folder
xPCDirectoryInfo.GetFiles File list from current folder
xPCDirectoryInfo.GetFileSystemInfosFile system information for files and subfolders in folder

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-86

Properties

Property C# Declaration Syntax Description Exception

CreationTimepublic override

DateTime

CreationTime {get;}

Get creation time of the
current FileSystemInfo
object.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Exists public override bool

Exists {get;}

Get a Boolean value
to indicate existence
of folder. A value of 1
indicates existent, 0
indicates nonexistent.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Extension public string

Extension {get;}

Get string that represents
the extension part of the
file.

FullName public virtual

string FullName

{get;}

Get full path name of the
folder or file.

Name public override

string Name {get;}

Get the name of this
xPCDirectoryInfo instance
as a string.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Parent public

xPCDirectoryInfo

Parent {get;}

Get the parent folder of a
specified subfolder.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Root public

xPCDirectoryInfo

Root {get;}

Get the root portion of a
path.

xPCException — When
problem occurs, query
xPCException object
Reason property.

 xPCDriveInfo Class

5-87

xPCDriveInfo Class
Information for target computer drive

Syntax

public class xPCDriveInfo

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCDriveInfo accesses information on a target computer drive.

Constructor

Constructor Description

xPCDriveInfo Initialize new instance of xPCDriveInfo class

Methods

Method Description

xPCDriveInfo.Refresh Synchronize with file drives on target computer

Properties

Property C# Declaration Syntax Description Exception

Available-

Freespace

public long

AvailableFreeSpace

{get;}

Indicate amount of
available free space on
drive.

xPCException — When
problem occurs, query
xPCException object
Reason property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-88

Property C# Declaration Syntax Description Exception

DriveFormat public string

DriveFormat {get;}

Get name of file system
type, such as FAT16 or
FAT32.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Name public string Name

{get;}

Get name of drive. xPCException — When
problem occurs, query
xPCException object
Reason property.

Root-

Directory

public

xPCDirectoryInfo

RootDirectory {get;}

Get root folder of drive. xPCException — When
problem occurs, query
xPCException object
Reason property.

TotalSize public long

TotalSize {get;}

Get total size of drive in
bytes.

xPCException — When
problem occurs, query
xPCException object
Reason property.

VolumeLabel public string

VolumeLabel {get;}

Get volume label of drive. xPCException — When
problem occurs, query
xPCException object
Reason property.

 xPCException Class

5-89

xPCException Class
Information for xPCException

Syntax

public class xPCException : Exception, ISerializable

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCException : Exception, ISerializable accesses information
on Simulink Real-Time exceptions.

Constructor

Constructor Description

xPCException Construct new instance of xPCException class

Properties

Property C# Declaration Syntax Description

Data public virtual IDictionary

Data {get;}

Get collection of key/value pairs
that provide additional user-defined
information about the exception.

HelpLink public virtual string

HelpLink {get; set;}

Get or set link to the help file
associated with this exception.

InnerException public Exception

InnerException {get;}

Get Exception instance that caused
the current exception.

Message public override string

Message {get;}

Get exception message. Overrides
Exception.Message property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-90

Property C# Declaration Syntax Description

Reason public xPCExceptionReason

Reason {get;}

Get xPCExceptionReason reason. See
xPCExceptionReason Enumerated
Data Type.

Source public virtual string Source

{get; set;}

Get or set name of real-time
application or object that causes the
error.

StackTrace public virtual string

StackTrace {get;}

Get string representation of the
frames on the call stack at the
time the method emits the current
exception.

TargetPCObject public xPCTargetPC

TargetPCObject {get;}

Get xPCTargetPC object that raised
the error.

TargetSite public MethodBase TargetSite

{get;}

Get method that emits the current
exception.

 xPCFileInfo Class

5-91

xPCFileInfo Class
Access to file and xPCFileStream objects

Syntax

public class xPCDriveInfo

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCDriveInfo accesses information on a target computer drive.

Constructor

Constructor Description

xPCFileInfo Construct new instance of xPCFileInfo class

Methods

Method Description

xPCFileInfo.CopyToHost Copy file from target computer file system to development computer
file system

xPCFileInfo.Create Create file in specified path name
xPCFileInfo.Delete Permanently delete file on target computer
xPCFileInfo.Open Open file
xPCFileInfo.OpenRead Create read-only xPCFileStream object
xPCFileInfo.Rename Rename file
xPCFileInfo Construct new instance of xPCFileInfo class

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-92

Properties

Property C# Declaration Syntax Description

Directory public xPCDirectoryInfo

Directory {get;}

Get an xPCDirectoryInfo object.

DirectoryName public string DirectoryName

{get;}

Get a string that represents the full
folder path name.

Exists public override bool Exists

{get;}

Get value that indicates whether a
file exists.

Length public long Length {get;} Get the size, in bytes, of the current
file.

Name public override string Name

{get;}

Get the name of the file.

 xPCFileScope Class

5-93

xPCFileScope Class
Access to file scopes

Syntax

public class xPCFileScope : xPCScope

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCFileScope : xPCScope initializes a new instance of the
xPCFileScope class.

Methods

The xPCFileScope class inherits methods from xPCScope Class.

Events

The xPCFileScope class inherits events from xPCScope Class.

Properties

The xPCFileScope class inherits its other properties from xPCScope Class.

Property C# Declaration Syntax Description Exception

AutoRestart public bool

AutoRestart {get;

set;}

Get or set the file scope
autorestart setting.
AutoRestart is a
Boolean. Values are 'on'
and 'off'.

xPCException — When
problem occurs, query
xPCException object
Reason property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-94

Property C# Declaration Syntax Description Exception

DataTime-

Object

public

xPCDataHostScSignalObject

DataTimeObject {get;}

Get data time object. xPCException — When
problem occurs, query
xPCException object
Reason property.

DynamicMode public bool

DynamicMode {get;

set;}

Get or set ability to
dynamically create
multiple log files for file
scopes. Values are 'on'
and 'off' . By default,
the value is 'off'.

xPCException — When
problem occurs, query
xPCException object
Reason property.

FileMode public SCFILEMODE

FileMode {get; set;}

Get or set write mode of
file. See xPCFileMode
Enumerated Data Type.

xPCException — When
problem occurs, query
xPCException object
Reason property.

FileName public string FileName

{get; set;}

Get or set file name for
scope.

 xPCFileScope Class

5-95

Property C# Declaration Syntax Description Exception

MaxWrite-

FileSize

public uint

MaxWriteFileSize {get;

set;}

Get or set the maximum
file size in bytes allowed
before incrementing to
the next file.

When the size of
a log file reaches
MaxWriteFileSize,
the software creates a
subsequently numbered
file name, and continues
logging data to that file,
up until the highest log
file number you have
specified.

If the software cannot
create additional log files,
it overwrites the first log
file.

This value must be a
multiple of WriteSize.
Default is 536870912.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Signals public xPCTarget-

ScopeSignalCollection

Signals {get;}

Get collection of file scope
signals (xPCFileScope-
SignalCollection)
assigned to this scope
object.

Trigger-

Signal

public

xPCTgtScopeSignal

TriggerSignal {get;

set;}

Get or set file
scope signal
(xPCFileScopeSignal)
used to trigger the scope.

xPCException — When
problem occurs, query
xPCException object
Reason property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-96

Property C# Declaration Syntax Description Exception

WriteSize public int WriteSize

{get; set;}

Get or set the unit
number of bytes for
memory buffer writes.
The memory buffer
accumulates data in
multiples of write size.
WriteSize must be
multiple of 512.

xPCException — When
problem occurs, query
xPCException object
Reason property.

 xPCFileScopeCollection Class

5-97

xPCFileScopeCollection Class
Collection of xPCFileScope objects

Syntax

public class xPCFileScopeCollection :

xPCScopeCollection<xPCFileScope>

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCFileScopeCollection :

xPCScopeCollection<xPCFileScope> initializes collection of xPCFileScope objects.

Methods

Method Description

xPCFileScopeCollection.Add Create xPCFileScope object with the next available scope ID as key
xPCFileScopeCollection.RefreshSynchronize with file scopes on target computer
xPCFileScopeCollection.StartAllStart all file scopes in one call
xPCFileScopeCollection.StopAllStop all file scopes in one call

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-98

xPCFileScopeSignal Class
Access to file scope signals

Syntax

public class xPCFileScopeSignal : xPCScopeSignal

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCFileScopeSignal : xPCScopeSignal initializes access to file
scope signals.

Properties

Property C# Declaration Syntax Description

FileScopeSignal-

DataObject

public

xPCDataFileScSignalObject

FileScopeSignalDataObject

{get;}

Get the data
xPCDataFileScSignalObject
object associated with this
xPCFileScopeSignal object.

Scope public xPCFileScope Scope

{get;}

Get parent file scope xPCFileScope
object.

 xPCFileScopeSignalCollection Class

5-99

xPCFileScopeSignalCollection Class
Collection of xPCFileScopeSignal objects

Syntax

public class xPCFileScopeSignalCollection :

xPCScopeSignalCollection<xPCFileScopeSignal>

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCFileScopeSignalCollection :

xPCScopeSignalCollection<xPCFileScopeSignal> initializes collection of
xPCFileScopeSignal objects.

Methods

Method Description

xPCFileScopeSignalCollection.AddAdd signals to file scope
xPCFileScopeSignalCollection.RefreshSynchronize with signals for associated scope on target computer

Properties

Property C# Declaration Syntax Description Exception

Item public

xPCFileScopeSignal

Item[string blkpath]

{get;}

Get xPCFileScopeSignal
object from signal name
(blkpath).

blkpath is the signal
name that represents a
signal object added to its

xPCException — When
problem occurs, query
xPCException object
Reason property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-100

Property C# Declaration Syntax Description Exception

parent xPCHostScope
object. This property
returns the file scope
signal object as type
xPCFileScopeSignal.

 xPCFileStream Class

5-101

xPCFileStream Class
Access xPCFileStream objects

Syntax
public class xPCFileStream : IDisposable

Description
Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCFileStream : IDisposable initializes xPCFileStream objects.
These objects expose the file stream around a file.

Constructor

Constructor Description

xPCFileStream Construct new instance of xPCFileStream class

Methods

Method Constructor

xPCFileStream.Close Close current stream
xPCFileStream.Read Read block of bytes from stream and write data to buffer
xPCFileStream.Write Write block of bytes to file stream
xPCFileStream.WriteByte Write byte to current position in file stream

Property

Property C# Declaration Syntax Description Exception

Length public long Length

{get;}

Get length of file stream. xPCException — When
problem occurs, query

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-102

Property C# Declaration Syntax Description Exception

xPCException object Reason
property.

 xPCFileSystem Class

5-103

xPCFileSystem Class
File system drives and folders

Syntax

public class xPCFileSystem

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCFileSystem initializes file system drive and folder objects.

Methods

Method Description

xPCFileSystem.Create Create folder
xPCFileSystem.GetCurrentDirectoryCurrent working folder for real-time application
xPCFileSystem.GetDrives Drive names for the logical drives on the target computer
xPCFileSystem.RemoveFile Remove file name from target computer
xPCFileSystem.SetCurrentDirectoryCurrent folder

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-104

xPCFileSystemInfo Class
File system information

Syntax

public abstract class xPCFileSystemInfo

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public abstract class xPCFileSystemInfo initializes file system information
objects.

Constructor

Constructor Description

xPCFileSystemInfo Initialize new instance of xPCFileSystemInfo class

Methods

Method Description

xPCFileSystemInfo.Delete Delete current folder

Properties

Property C# Declaration Syntax Description

CreationTime public DateTime CreationTime

{get;}

Get creation time of current
FileSystemInfo object.

Exists public abstract bool Exists

{get;}

Get value that indicates existence of file
or folder.

 xPCFileSystemInfo Class

5-105

Property C# Declaration Syntax Description

Extension public string Extension {get;} Get string that represents file extension.
FullName public virtual string FullName

{get;}

Get full path name of file or folder.

Name public abstract string Name

{get;}

Get name of folder.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-106

xPCHostScope Class
Access to host scopes

Syntax

public class xPCHostScope : xPCScope

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCHostScope : xPCScope initializes a new instance of the
xPCHostScope class.

Methods

The xPCHostScope class inherits methods from xPCScope Class.

Events

The xPCHostScope class inherits events from xPCScope Class.

Properties

The xPCHostScope class inherits its other properties from xPCScope Class.

Property C# Declaration Syntax Description Exception

DataTime-

Object

public

xPCDataHostSc-

SignalObject

DataTimeObject

{get;}

Get host scope time data
object xPCDataHost-
ScSignalObject associated
with this scope.

 xPCHostScope Class

5-107

Property C# Declaration Syntax Description Exception

Signals public xPCTarget-

ScopeSignal-

Collection Signals

{get;}

Get collection of host
scope signals (xPCHost-
ScopeSignalCollection)
assigned to this scope
object.

Trigger-

Signal

public xPCTgtScope-

Signal TriggerSignal

{get; set;}

Get or set host scope
signal (xPCHostScope-
Signal) used to trigger the
scope.

xPCException — When
problem occurs, query
xPCException object
Reason property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-108

xPCHostScopeCollection Class
Collection of xPCHostScope objects

Syntax

public class xPCHostScopeCollection :

xPCScopeCollection<xPCHostScope>

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCHostScopeCollection :

xPCScopeCollection<xPCHostScope> initializes collection of xPCHostScope objects.

Methods

Method Description

xPCHostScopeCollection.Add Create xPCHostScope object with the next available scope ID as key
xPCHostScopeCollection.RefreshRefresh host scope object state
xPCHostScopeCollection.StartAllStart all host scopes in one call
xPCHostScopeCollection.StopAllStop all host scopes in one call

 xPCHostScopeSignal Class

5-109

xPCHostScopeSignal Class
Access to host scope signals

Syntax

public class xPCHostScopeSignal : xPCScopeSignal

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCHostScopeSignal : xPCScopeSignal initializes access to host
scope signals.

Properties

Property C# Declaration Syntax Description

HostScopeSignal-

DataObject

public

xPCDataHostScSignalObject

HostScopeSignalDataObject

{get;}

Get host scope signal data object.

Scope public xPCHostScope Scope

{get;}

Get host scope.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-110

xPCHostScopeSignalCollection Class
Collection of xPCHostScopeSignal objects

Syntax

public class xPCHostScopeSignal : xPCScopeSignal

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCHostScopeSignal : xPCScopeSignal represents a collection of
xPCHostScopeSignal objects.

Methods

Method Description

xPCHostScopeSignalCollection.AddCreate xPCHostScopeSignal object
xPCHostScopeSignalCollection.RefreshSynchronize signals for associated host scopes on target computer

Properties

Property C# Declaration Syntax Description Exception

Item public

xPCHostScopeSignal

Item[string blkpath]

{get;}

Get xPCHostScopeSignal
object from signal name
(blkpath).

blkpath is the signal
name that represents a
signal object added to its

xPCException — When
problem occurs, query
xPCException object
Reason property.

 xPCHostScopeSignalCollection Class

5-111

Property C# Declaration Syntax Description Exception

parent xPCHostScope
object.

This property returns the
file scope signal object as
type xPCHostScopeSignal.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-112

xPCLog Class
Base data logging class

Syntax

public abstract class xPCLog : xPCApplicationObject

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public abstract class xPCLog : xPCApplicationObject represents the base
data logging class.

Properties

Properties C# Declaration Syntax Description

IsEnabled public abstract bool

IsEnabled {get;}

Get whether to enable or disable
logging.

NumLogSamples public int NumLogSamples

{get;}

Get number of samples in log
buffer.

NumLogWraps public int NumLogWraps

{get;}

Get number of times log buffer
wraps.

 xPCOutputLogger Class

5-113

xPCOutputLogger Class
Access to output logger

Syntax

public class xPCOutputLogger : xPCLog

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCOutputLogger : xPCLog initializes a new instance of the
xPCOutputLogger class.

Properties

The xPCOutputLogger class inherits its other properties from xPCLog Class.

Properties C# Declaration Syntax Description

DataLoggingObjects public

IList<xPCDataLoggingObject>

DataLoggingObjects {get;}

Get ILIST of application data
logging objects.

IsEnabled public override bool

IsEnabled {get;}

Get whether to enable or
disable logging. Overrides
xPCLog.IsEnabled.

Item public

xPCDataLoggingObject

Item[int index] {get;}

Get xPCDataLogging object
specified by index (index).
index is the index to the
specified logging output. This
property returns an object of type
xPCDataLoggingObject.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-114

Properties C# Declaration Syntax Description

NumOutputs public int NumOutputs

{get;}

Return a reference to the
xPCOutputLogger object.

 xPCParameter Class

5-115

xPCParameter Class
Single run-time tunable parameter

Syntax

public class xPCParameter : xPCApplicationNotficationObject

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCParameter : xPCApplicationNotficationObject initializes
a new instance of the xPCParameter class. An xPCParameter object represents a
single specific real-time application parameter. You can tune the parameter using
xPCParameter objects.

Methods

Method Description

xPCParameter.GetParam Get parameter values from target computer
xPCParameter.GetParamAsyncAsynchronous request to get parameter values from target computer
xPCParameter.SetParam Change value of parameter on target computer
xPCParameter.SetParamAsyncAsynchronous request to change parameter value on target

computer

Events

Event Description

xPCParameter.GetParamCompletedEvent when xPCParameter.GetParamAsync is complete
xPCParameter.SetParamCompletedEvent when xPCParameter.SetParamAsync is complete

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-116

Properties

Property C# Declaration Syntax Description Exception

BlockPath public string

BlockPath {get;}

Get the full block path
name of the parameter
for an instance of an
xPCParameter object.

DataType public string

DataType {get;}

Get the Simulink type, as
a string, of the parameter
for an instance of an
xPCParameter object.

Dimensions public int[]

Dimensions {get;}

Get an array that contains
elements of dimension
lengths.

Name public string Name

{get;}

Get the name of the
parameter to an instance
of an xPCParameter

ParameterId public int

ParameterId {get;}

Get the numerical index
(identifier) that maps
to an instance of an
xPCParameter object.

Rank public int Rank

{get;}

Get the number of
dimensions of the
parameter

Value public Array Value

{get; set;}

Get and set the parameter
value.

xPCException — When
problem occurs, query
xPCException object
Reason property.

 xPCParameters Class

5-117

xPCParameters Class

Access run-time parameters

Syntax

public class xPCParameters : xPCApplicationObject

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCParameters : xPCApplicationObject initializes a new
instance of the xPCParameters class. An xPCParameters object is a container to access
run time parameters.

Methods

Method Description

xPCParameters.LoadParameterSetLoad parameter values for real-time application
xPCParameters.Refresh Refresh state of object
xPCParameters.SaveParameterSetSave parameter values of real-time application

Properties

Property C# Declaration Syntax Description

NumParameters public int NumParameters

{get;}

Get the total number of tunable
parameters in the real-time
application.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-118

Property C# Declaration Syntax Description

Item public xPCParameter Item[int

paramIdx] {get;} or

public xPCParameter

Item[string blkName, string

paramName] {get;}

Return reference to xPCParameter
object specified by its parameter
identifier (paramIdx) or parameter
name (paramname).

paramIdx is a 32-bit integer
parameter identifier that represents
the actual signal.

blkName is a string that specifies
the block path name for the actual
block that contains the parameter.
paramName is a string that specifies
the parameter name.

This method returns the
xPCParameter object that represents
the actual parameter.

 xPCScope Class

5-119

xPCScope Class

Access Simulink Real-Time scopes

Syntax

public abstract class xPCScope : xPCApplicationNotficationObject

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public abstract class xPCScope : xPCApplicationNotficationObject

initializes a new instance of the xPCScope class.

Methods

Method Description

xPCScope.Start Start scope
xPCScope.Stop Stop scope
xPCScope.Trigger Software-trigger start of data acquisition for scopes

Events

Event Description

xPCScope.ScopeStarted Event after xPCScope.Start is complete
xPCScope.ScopeStarting Event before xPCScope.Start executes
xPCScope.ScopeStopped Event after xPCScope.Stop is complete
xPCScope.ScopeStopping Event before xPCScope.Stop executes

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-120

Properties

Property C# Declaration Syntax Description Exception

Decimation public int

Decimation {get;

set;}

Get or set a number n,
where every nth sample
is acquired in a scope
window.

xPCException — When
problem occurs, query
xPCException object
Reason property.

NumPrePost-

Samples

public int

NumPrePostSamples

{get; set;}

Get or set number of
samples collected before
or after a trigger event.
The default value is 0.
Entering a negative
value collects samples
before the trigger event.
Entering a positive value
collects samples after
the trigger event. If you
set TriggerMode to
'FreeRun', changing
this property does not
change data acquisition.

xPCException — When
problem occurs, query
xPCException object
Reason property.

NumSamples public int

NumSamples {get;

set;}

Get or set number of
contiguous samples
captured during the
acquisition of a data
package. If the scope
stops before capturing
this number of samples,
the scope has the
collected data up to the
end of data collection. It
then has zeroes for the
remaining uncollected
data. Note what type of
data you are collecting, it
is possible that your data
contains zeroes.

xPCException — When
problem occurs, query
xPCException object
Reason property.

 xPCScope Class

5-121

Property C# Declaration Syntax Description Exception

For file scopes, this
parameter works with
the autorestart setting.
If autorestart is enabled,
the file scope collects
data up to NumSamples,
then starts over again,
overwriting the buffer. If
autorestart is disabled,
the file scope collects data
only up to NumSamples,
then stops.

ScopeId public int ScopeId

{get;}

A numeric index, unique
for each scope.

Status public SCSTATUS

Status {get;}

Indicate whether data is
being acquired, the scope
is waiting for a trigger,
the scope has been
stopped (interrupted),
or acquisition is
finished. Values
are 'Acquiring',
'Ready for being

Triggered',
'Interrupted', and
'Finished'.

xPCException — When
problem occurs, query
xPCException object
Reason property.

TriggerAnySignalpublic int

TriggerAnySignal

{get; set;}

Get or set xPCSignal
Class object for trigger
signal. If TriggerMode
is 'Signal', this signal
triggers the scope even
if it was not added to the
scope.

xPCException — When
problem occurs, query
xPCException object
Reason property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-122

Property C# Declaration Syntax Description Exception

TriggerLevel public double

TriggerLevel {get;

set;}

Get or set trigger level.
If TriggerMode is
'Signal', indicates the
value the signal has to
cross to trigger the scope
and start acquiring data.
You can cross the trigger
level with either a rising
or falling signal.

xPCException — When
problem occurs, query
xPCException object
Reason property.

TriggerMode public

SCTRIGGERMODE

TriggerMode {get;

set;}

Get or set trigger
mode for a scope. Valid
values are 'FreeRun'
(default), 'Software',
'Signal', and 'Scope'.

xPCException — When
problem occurs, query
xPCException object
Reason property.

TriggerScope public int

TriggerScope {get;

set;}

If TriggerMode is
'Scope', identifies the
scope to use for a trigger.
You can set a scope to
trigger when another
scope is triggered. You do
this operation by setting
the slave scope property
TriggerScope to the
scope index of the master
scope.

xPCException — When
problem occurs, query
xPCException object
Reason property.

TriggerScope-

Sample

public int

TriggerScopeSample

{get; set;}

If TriggerMode is
'Scope', specifies the
number of samples
the triggering scope
is to acquire before
triggering a second
scope. This value must be
nonnegative.

xPCException — When
problem occurs, query
xPCException object
Reason property.

 xPCScope Class

5-123

Property C# Declaration Syntax Description Exception

TriggerSlope public TRIGGERSLOPE

{get; set;}

If TriggerMode is
'Signal', indicates
whether the trigger is
on a rising or falling
signal. Values are of
type SLTRIGGERSLOPE:
SLTRIGGERSLOPE.EITHER

(default),
SLTRIGGERSLOPE.RISING,
and
SLTRIGGERSLOPE.FALLING.
This property returns the
value SCTRIGGERSLOPE.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Type public string Type

{get;}

Get scope type as a
string.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-124

xPCScopeCollectionEventArgs Class
xPCScopeCollection.Added event data

Syntax

public class xPCScopeCollectionEventArgs : EventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCScopeCollectionEventArgs : EventArgs contains data
returned by the event of adding a scope to a scope collection.

Properties

Properties C# Declaration Syntax Description

Scope public xPCScope Scope

{get;}

Get xPCScope object you added.

 xPCScopeRemCollectionEventArgs Class

5-125

xPCScopeRemCollectionEventArgs Class
xPCScopeCollection.Removed event data

Syntax

public class xPCScopeRemCollectionEventArgs : EventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCScopeRemCollectionEventArgs : EventArgs contains data
returned by the event of removing a scope from a scope collection.

Properties

Properties C# Declaration Syntax Description

ScopeNumber public int ScopeNumber

{get;}

Get scope number of the scope
that you have removed.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-126

xPCScopeSignalCollectionEventArgs Class
xPCScopeSignalCollection.Added event data

Syntax

public class xPCScopeSignalCollectionEventArgs : EventArgs

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCScopeSignalCollectionEventArgs : EventArgs contains
data returned by the event of adding a signal to a scope signal collection.

Properties

Properties C# Declaration Syntax Description

Scope public xPCScope Scope

{get;}

Get parent xPCScope object

Signal public xPCSignal Signal

{get;}

Get xPCSignal object that you
added to collection.

 xPCScopes Class

5-127

xPCScopes Class

Access scope objects

Syntax

public class xPCScopes : xPCApplicationObject

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCScopes : xPCApplicationObject initializes a new instance of
the xPCScopes class.

Methods

Method Description

xPCScopes.RefreshAll Synchronize with all scopes on target computer

Properties

Property C# Declaration Syntax Description

FileScopes public

xPCFileScopeCollection

FileScopes {get;}

Get collection of file scopes
(xPCFileScopeCollection).

HostScopes public

xPCHostScopeCollection

HostScopes {get;}

Get collection of host scopes
(xPCHostScopeCollection).

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-128

Property C# Declaration Syntax Description

ScopeObjectDict public IDictionary<int,

xPCScope> ScopeObjectDict

{get;}

Get entire scopes object as a
Dictionary object.

ScopeObjectList public IList<xPCScope>

ScopeObjectList {get;}

Get entire scopes object as a list.

TargetScopes public

xPCTargetScopeCollection

TargetScopes {get;}

Get collection of target scopes
(xPCTargetScopeCollection).

 xPCSignal Class

5-129

xPCSignal Class
Access signal objects

Syntax

public class xPCSignal : xPCApplicationObject

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCSignal : xPCApplicationObject initializes a new instance of
the xPCSignal class.

Methods

Method Description

xPCSignal.GetValue Value of signal at moment of request
xPCSignal.TryGetValue Status of get signal value at moment of request

Properties

Property C# Declaration Syntax Description

BlockPath public virtual string

BlockPath {get;}

Get block path name (signal name) of
the signal.

DataType public virtual string DataType

{get;}

Get Simulink data type name.

Label public virtual string Label

{get;}

Get label of signal. If no label is
associated with the signal, this property
returns an empty string.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-130

Property C# Declaration Syntax Description

SignalId public virtual int SignalId

{get;}

Get numeric identifier that represents
the signal object.

UserData public Object UserData {get;

set;}

Get and set user-defined object that you
can use to store and retrieve additional
information.

Width public virtual int Width

{get;}

Get signal width.

 xPCSignals Class

5-131

xPCSignals Class

Access signal objects

Syntax

public class xPCSignals : xPCApplicationObject

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCSignals : xPCApplicationObject initializes a new instance
of the xPCSignals class.

Methods

Method Description

xPCSignals.GetSignals List of xPCSignal objects specified by array of signal identifiers
xPCSignals.GetSignalsValue Vector of signal values from array
xPCSignals.Refresh Refresh state of object

Properties

Property C# Declaration Syntax Description Exception

NumSignalspublic int NumSignals

{get;}

Get total numbers of
signals available in real-
time application.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-132

Property C# Declaration Syntax Description Exception

this public xPCSignal

Item[int signalIdx]

{get;} or

public xPCSignal

Item[string blkPath]

{get;}

Return reference to
xPCSignal object specified
by its signal identifier
(signalIdx) or signal
name (blkPath).

signalIdx is a 32–bit
integer that identifies the
signal.

blkPath is a string that
specifies the block path
name for the signal.

xPCException — When
problem occurs, query
xPCException object Reason
property.

ArgumentNullException

— signalIdx or blkPath
is NULL reference.

 xPCStateLogger Class

5-133

xPCStateLogger Class
Access to state log

Syntax

public class xPCStateLogger : xPCLog

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCStateLogger : xPCLog initializes a new instance of the
xPCStateLogger class.

Properties

The xPCStateLogger class inherits its other properties from xPCLog Class.

Property C# Declaration Syntax Description

DataLogging-

Objects

public

IList<xPCDataLoggingObject>

DataLoggingObjects {get;}

Get collection of
xPCDataLoggingObject items
available for state logging.

IsEnabled public override bool

IsEnabled {get;}

Get whether to enable or disable
logging.

Overrides xPCLog.IsEnabled.
Item public xPCDataLoggingObject

Item[int index] {get;}

Get reference to the
xPCLoggingObject that corresponds
to index (state index). index is a
32–bit integer.

NumStates public int NumStates {get;} Get the number of states.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-134

xPCTargetPC Class

Access target computer

Syntax

public xPCTargetPC()

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCTargetPC() initializes a new instance of the xPCTargetPC class.

Constructor

Constructor Description

xPCTargetPC Construct xPCTargetPC object.

Methods

Method Description

xPCTargetPC.Connect Establish connection to target computer
xPCTargetPC.ConnectAsync Asynchronous request for target computer connection
xPCTargetPC.Disconnect Disconnect from target computer
xPCTargetPC.DisconnectAsyncAsynchronous request to disconnect from target computer
xPCTargetPC.Dispose Clean up used resources
xPCTargetPC.Load Load real-time application onto target computer

 xPCTargetPC Class

5-135

Method Description

xPCTargetPC.LoadAsync Asynchronous request to load real-time application onto target
computer

xPCTargetPC.Ping Test communication between development and target computers
xPCTargetPC.Reboot Restart target computer
xPCTargetPC.RebootAsync Asynchronous request to restart target computer
xPCTargetPC.tcpPing Determine TCP/IP accessibility of remote computer
xPCTargetPC.Unload Unload real-time application from target computer
xPCTargetPC.UnloadAsync Asynchronous request to unload real-time application from target

computer

Events

Event Description

xPCTargetPC.ConnectCompletedEvent when xPCTargetPC.ConnectAsync is complete
xPCTargetPC.Connected Event after xPCTargetPC.Connect is complete
xPCTargetPC.Connecting Event before xPCTargetPC.Connect starts
xPCTargetPC.DisconnectCompletedEvent when xPCTargetPC.DisconnectAsync is complete
xPCTargetPC.Disconnected Event after xPCTargetPC.Disconnect is complete
xPCTargetPC.Disconnecting Event before xPCTargetPC.Disconnect starts
xPCTargetPC.Disposed Event after xPCTargetPC.Dispose is complete
xPCTargetPC.LoadCompletedEvent when xPCTargetPC.LoadAsync is complete
xPCTargetPC.Loaded Event after xPCTargetPC.Load is complete
xPCTargetPC.Loading Event before xPCTargetPC.Load starts
xPCTargetPC.RebootCompletedEvent when xPCTargetPC.RebootAsync is complete
xPCTargetPC.Rebooted Event after xPCTargetPC.Reboot is complete
xPCTargetPC.Rebooting Event before xPCTargetPC.Reboot starts
xPCTargetPC.UnloadCompletedEvent when xPCTargetPC.UnloadAsync is complete
xPCTargetPC.Unloaded Event after xPCTargetPC.Unload is complete
xPCTargetPC.Unloading Event before xPCTargetPC.Unload starts

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-136

Properties

Property C# Declaration Syntax Description Exception

Application public

xPCApplication

Application {get;}

Get reference to an
xPCApplication object
that you can use to
interface with the real-
time application. If
no communication is
established, the property
returns a NULL object.

Communication-

TimeOut

public int

CommunicationTimeOut

{get; set;}

Get or set the
communication timeout
in seconds.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Component public IComponent

Component {get;}

Get component associated
with the ISite when
implemented by a class.

Container public IContainer

Container {get;}

Get the IContainer
associated with the ISite
when implemented by a
class.

Container-

Control

public

ContainerControl

ContainerControl

{get; set;}

Provide focus-
management
functionality for controls
that can function as
containers for other
controls.

DLMFileName public string

DLMFileName {get;

set;}

Get or set the full path to
the DLM file name.

Echo public bool Echo

{get; set;}

Get or set the target
display on the target
computer.

xPCException — When
problem occurs, query
xPCException object
Reason property.

 xPCTargetPC Class

5-137

Property C# Declaration Syntax Description Exception

FileSystem public

xPCFileSystem

FileSystem {get;}

Get a reference to
an xPCFileSystem
object that you can use
to interface with the
target file system. If
no communication is
established, the property
returns a NULL object.

HostTarget-

Comm

public XPCProtocol

HostTargetComm

{get; set;}

Get or set the
physical medium for
communication. See
xPCProtocol Enumerated
Data Type.

IsConnected public bool

IsConnected {get;}

Get connection status
(established or not) to a
remote target computer.

IsConnecting-

Busy

public bool

IsConnectingBusy

{get;}

Get ConnectAsync
request status (in
progress or not).

IsDiscon-

nectingBusy

public bool

IsDisconnectingBusy

{get;}

Get whether a
DisconnectAsync

request is in progress.

IsLoadingBusy public bool

IsLoadingBusy

{get;}

Gets LoadAsync request
status (in progress or
not).

IsRebooting-

Busy

public bool

IsRebootingBusy

{get;}

Get RebootAsync
request status (in
progress or not).

IsUnloading-

Busy

public bool

IsUnloadingBusy

{get;}

Gets unLoadingAsync
request status (in
progress or not).

RS232BaudRate public

XPCRS232BaudRate

RS232Baudrate {get;

set;}

Get or set baudrate
for serial link. See
xPCRS232BaudRate
Enumerated Data Type.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-138

Property C# Declaration Syntax Description Exception

RS232HostPort public

XPCRS232CommPort

RS232HostPort {get;

set;}

Get or set the serial COM
port for connection on
development computer.
The Simulink Real-Time
software automatically
determines the COM port
on the target computer.
See xPCRS232Comport
Enumerated Data Type.

SessionTime public double

SessionTime {get;}

Get the length of time
Simulink Real-Time
kernel has been running
on the target computer.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Site public ISite Site

{get; set;}

Get or set site of the
control.

TargetPCName public string

TargetPCName {get;

set;}

Get or set a value
indicating the target
computer name
associated with the target
computer.

TcpIpTarget-

Address

public string

TcpIpTargetAddress

{get; set;}

Get or set a valid IP
address for your target
computer.

TcpIpTarget-

Port

public string

TcpIpTargetPort

{get; set;}

Get or set the TCP/IP
target port. The default
is 22222 and should
not cause problems.
This number is higher
than the reserved area
(for example, the port
numbers reserved for
telnet or ftp). The
software uses this value
only for the target
computer.

 xPCTargetScope Class

5-139

xPCTargetScope Class
Access to target scopes

Syntax

public class xPCTargetScope : xPCScope

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCTargetScope : xPCScope initializes a new instance of the
xPCTargetScope class.

Methods

The xPCTargetScope class inherits methods from xPCScope Class.

Events

The xPCTargetScope class inherits events from xPCScope Class.

Properties

The xPCTargetScope class inherits its other properties from xPCScope Class.

Property C# Declaration Syntax Description Exception

Display-

Mode

public SCDISPLAYMODE

DisplayMode {get;

set;}

Get or set scope mode for
displaying signals.

xPCException — When
problem occurs, query
xPCException object
Reason property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-140

Property C# Declaration Syntax Description Exception

Grid public bool Grid

{get; set;}

Get or set status of grid line
for particular scope.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Signals public

xPCTargetScope-

SignalCollection

Signals {get;}

Get the collection of target
scope signals xPCTarget-
ScopeSignalCollection that
you assign to this scope
object.

Trigger-

Signal

public

xPCTgtScopeSignal

TriggerSignal {get;

set;}

Get or set target scope
signal xPCTgtScopeSignal
used to trigger the scope.

xPCException — When
problem occurs, query
xPCException object
Reason property.

YLimit public double[]

YLimit {get; set;}

Get or set y-axis minimum
and maximum limits for
scope.

xPCException — When
problem occurs, query
xPCException object
Reason property.

 xPCTargetScopeCollection Class

5-141

xPCTargetScopeCollection Class
Collection of xPCTargetScope objects

Syntax

public class xPCTargetScopeCollection :

xPCScopeCollection<xPCTargetScope>

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCTargetScopeCollection :

xPCScopeCollection<xPCTargetScope> initializes collection of xPCTargetScope
objects.

Methods

Method Description

xPCTargetScopeCollection.AddCreate xPCTargetScope object with the next available scope ID as
key

xPCTargetScopeCollection.RefreshRefresh target scope object state
xPCTargetScopeCollection.StartAllStart all target scopes in one call
xPCTargetScopeCollection.StopAllStop all target scopes in one call

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-142

xPCTargetScopeSignalCollection Class
Collection of xPCHostScopeSignal objects

Syntax

public class xPCTargetScopeSignalCollection :

xPCScopeSignalCollection

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCTargetScopeSignalCollection :

xPCScopeSignalCollection .

Methods

Method Description

xPCTargetScopeSignalCollection.AddCreate xPCTargetScopeSignal object
xPCTargetScopeSignalCollection.RefreshSynchronize signals for associated target scopes on target computer

Properties

Property C# Declaration Syntax Description Exception

Item public

xPCTgtScopeSignal

Item[string

blkpath] {get;}

Get xPCTgtScopeSignal
object from signal name
(blkpath).

blkpath is the signal
name that represents a

xPCException — When
problem occurs, query
xPCException object
Reason property.

 xPCTargetScopeSignalCollection Class

5-143

Property C# Declaration Syntax Description Exception

signal object added to its
parent xPCTargetScope
object.

This property returns the
file scope signal object as
type xPCTgtScopeSignal.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-144

xPCTETLogger Class
Access to task execution time (TET) logger

Syntax

public class xPCTETLogger : xPCLog

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCTETLogger : xPCLog initializes a new instance of the
xPCTETLogger class.

Properties

The xPCTETLogger class inherits its other properties from xPCLog Class.

Properties C# Declaration Syntax Description

DataLogObject public

xPCDataLoggingObject

DataLogObject {get;}

Get TET data logging object.

IsEnabled public override bool

IsEnabled {get;}

Get whether to enable or disable
logging.

Overrides xPCLog.IsEnabled.

 xPCTgtScopeSignal Class

5-145

xPCTgtScopeSignal Class
Access to target scope signals

Syntax

public class xPCTgtScopeSignal : xPCScopeSignal

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCTgtScopeSignal : xPCScopeSignal initializes access to target
scope signals.

Properties

Property C# Declaration Syntax Description Exception

Numerical

Format

public string

NumericalFormat

{get; set;}

Get and set numerical
format for the numeric
displayed signal
associated with this
object.

xPCException — When
problem occurs, query
xPCException object
Reason property.

Scope public

xPCTargetScope Scope

{get;}

Get parent target scope
xPCTargetScope object.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-146

xPCTimeLogger Class
Access to output log

Syntax

public class xPCTimeLogger : xPCLog

Description

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public class xPCTimeLogger : xPCLog initializes a new instance of the
xPCTimeLogger class.

Properties

The xPCTimeLogger class inherits its other properties from xPCLog Class.

Properties C# Declaration Syntax Description

DataLogObjects public

xPCDataLoggingObject

DataLogObject {get;}

Get the xPCDataLoggingObject
of the time log.

IsEnabled public override bool

IsEnabled {get;}

Get whether to enable or disable
logging.

Overrides xPCLog.IsEnabled.

 xPCFileInfo.Open

5-147

xPCFileInfo.Open
Open file

Syntax

public xPCFileStream Open(xPCFileMode fileMode)

Description

Class: xPCFileInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCFileStream Open(xPCFileMode fileMode) opens file with specified
mode. This method returns the xPCFileStream object for the file. See xPCFileMode
Enumerated Data Type for file mode options.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-148

xPCFileInfo.OpenRead
Create read-only xPCFileStream object

Syntax

public xPCFileStream OpenRead()

Description

Class: xPCFileInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCFileStream OpenRead() creates a read-only xPCFileStream object. This
method returns the xPCFileStream object for the file.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

 xPCTargetPC.Ping

5-149

xPCTargetPC.Ping
Test communication between development and target computers

Syntax

public bool Ping()

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public bool Ping() tests the communication between development and target
computers. This method returns a Boolean value.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-150

xPCFileStream.Read
Read block of bytes from stream and write data to buffer

Syntax

public int Read(byte[] buffer, int offset, int count)

Description

Class: xPCFileStream Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public int Read(byte[] buffer, int offset, int count) reads a block
of bytes from the file stream. It then writes the data to the specified buffer, buffer.
buffer specifies the size in bytes and is a byte structure (8-bit unsigned integer). When
this method returns, it contains the byte array with the values between offset and
(offset + count - 1), replaced by the bytes read from the current source. offset is
an integer. It specifies the byte offset in the array at which the method places the read
bytes. count is an integer. It specifies the number of bytes to read from the stream.
This method returns the total number of bytes the method reads into the buffer. This
number might be less than the number of bytes requested if that number of bytes are not
currently available. It can also be zero if the method reaches the end of the stream.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

 xPCTargetPC.Reboot

5-151

xPCTargetPC.Reboot
Restart target computer

Syntax

public void Reboot()

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Reboot() restarts the target computer.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-152

xPCTargetPC.RebootAsync
Asynchronous request to restart target computer

Syntax

public void RebootAsync()

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void RebootAsync() begins an asynchronous request to restart a target
computer.

Exception

Exception Condition

InvalidOperation-

Exception

When another thread uses this method.

 xPCTargetPC.RebootCompleted

5-153

xPCTargetPC.RebootCompleted
Event when xPCTargetPC.RebootAsync is complete

Syntax

public event RebootCompletedEventHandler RebootCompleted

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event RebootCompletedEventHandler RebootCompleted occurs when an
asynchronous restart operation is complete.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-154

xPCTargetPC.Rebooted
Event after xPCTargetPC.Reboot is complete

Syntax

public event EventHandler Rebooted

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Rebooted occurs after a target computer restart is
complete.

 xPCTargetPC.Rebooting

5-155

xPCTargetPC.Rebooting
Event before xPCTargetPC.Reboot starts

Syntax

public event EventHandler Rebooting

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Rebooting occurs before a restart operation executes.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-156

xPCFileScopeCollection.Refresh
Synchronize with file scopes on target computer

Syntax

public override void Refresh()

Description

Class: xPCFileScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public override void Refresh() synchronizes with file scopes on target computer.

Overrides xPCScopeCollection<xPCFileScope>.Refresh().

 xPCScopes.RefreshAll

5-157

xPCScopes.RefreshAll
Refresh state of object

Syntax

public void RefreshAll()

Description

Class: xPCScopes Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void RefreshAll() refreshes state of object.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-158

xPCDriveInfo.Refresh
Synchronize with file drives on target computer

Syntax

public void Refresh()

Description

Class: xPCDriveInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Refresh() synchronizes with file drives on target computer.

 xPCFileScopeSignalCollection.Refresh

5-159

xPCFileScopeSignalCollection.Refresh
Synchronize with signals for associated scope on target computer

Syntax

public override void Refresh()

Description

Class: xPCFileScopeSignalCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public override void Refresh() synchronizes with signals for associated file
scopes on target computer.

Overrides xPCScopeCollection<xPCFileScopeSignal>.Refresh().

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-160

xPCHostScopeCollection.Refresh
Refresh host scope object state

Syntax

public override void Refresh()

Description

Class: xPCHostScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public override void Refresh() refreshes host scope object state.

Overrides xPCScopeCollection<xPCHostScope>.Refresh().

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

 xPCHostScopeSignalCollection.Refresh

5-161

xPCHostScopeSignalCollection.Refresh
Synchronize signals for associated host scopes on target computer

Syntax

public override void Refresh()

Description

Class: xPCHostScopeSignalCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public override void Refresh() synchronizes signals for associated host scopes
on target computer.

Overrides xPCScopeCollection<xPCHostScope>.Refresh().

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-162

xPCParameters.Refresh
Refresh state of object

Syntax

public override void Refresh()

Description

Class: xPCParameters Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public override void Refresh() refreshes the state of the object.

 xPCSignals.Refresh

5-163

xPCSignals.Refresh
Refresh state of object

Syntax

public void Refresh()

Description

Class: xPCSignals Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Refresh() refreshes the state of the object.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-164

xPCTargetScopeCollection.Refresh
Refresh target scope object state

Syntax

public override void Refresh()

Description

Class: xPCTargetScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public override void Refresh() refreshes target scope object state.

Overrides xPCScopeCollection<xPCTargetScope>.Refresh().

 xPCTargetScopeSignalCollection.Refresh

5-165

xPCTargetScopeSignalCollection.Refresh
Synchronize signals for associated target scopes on target computer

Syntax

public override void Refresh()

Description

Class: xPCTargetScopeSignalCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public override void Refresh() synchronizes signals for associated target scopes
on target computer.

Overrides xPCScopeSignalCollection<xPCTgtScopeSignal>.Refresh().

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-166

xPCFileSystem.RemoveFile
Remove file name from target computer

Syntax

public void RemoveFile(string fileName)

Description

Class: xPCFileSystem Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void RemoveFile(string fileName) removes the specified file name from
the target computer. fileName is a string that specifies the full path name to the file you
want to remove.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

 xPCFileInfo.Rename

5-167

xPCFileInfo.Rename
Rename file

Syntax

public xPCFileInfo Rename(string newName)

Description

Class: xPCFileInfo Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCFileInfo Rename(string newName) changes file name to newName.
newName is a string. This method returns the xPCFileInfo object.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-168

xPCParameters.SaveParameterSet
Save parameter values of real-time application

Syntax

public void SaveParameterSet(string fileName)

Description

Class: xPCParameters Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void SaveParameterSet(string fileName) saves parameter values of the
real-time application in a file. fileName is a string that represents the file to contain the
saved parameter values.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

 SCDISPLAYMODE Enumerated Data Type

5-169

SCDISPLAYMODE Enumerated Data Type
Target scope display mode values

Syntax

public enum SCDISPLAYMODE

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum SCDISPLAYMODE specifies target scope display mode values.

Members

Member Description

NUMERICAL Specifies target scope drawing mode to display numerical value.
REDRAW Specifies target scope drawing mode to redraw mode.
SLIDING Specifies target scope drawing mode to sliding mode.
ROLLING Specifies target scope drawing mode to rolling mode.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-170

SCFILEMODE Enumerated Data Type
Write mode values for when file allocation table entry is updated

Syntax

public enum SCFILEMODE

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum SCFILEMODE specifies write mode values for when file allocation table
entry is updated.

Members

Member Description

LAZY Enables lazy write mode.
COMMIT Enables commit write mode.

 xPCScope.ScopeStarted

5-171

xPCScope.ScopeStarted
Event after xPCScope.Start is complete

Syntax

public event EventHandler ScopeStarted

Description

Class: xPCScope Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler ScopeStarted occurs after a scope start command is
complete.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-172

xPCScope.ScopeStarting
Event before xPCScope.Start executes

Syntax

public event EventHandler ScopeStarting

Description

Class: xPCScope Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler ScopeStarting occurs before a scope executes.

 xPCScope.ScopeStopped

5-173

xPCScope.ScopeStopped
Event after xPCScope.Stop is complete

Syntax

public event EventHandler ScopeStarting

Description

Class: xPCScope Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler ScopeStarting occurs after a scope completes a
manual stop command.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-174

xPCScope.ScopeStopping
Event before xPCScope.Stop executes

Syntax

public event EventHandler ScopeStopping

Description

Class: xPCScope Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler ScopeStopping occurs before a scope completes a
manual stop.

 SCSTATUS Enumerated Data Type

5-175

SCSTATUS Enumerated Data Type
Scope status values

Syntax

public enum SCSTATUS

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum SCSTATUS specifies scope status values.

Members

Member Description

WAITTOSTART Scope is ready and waiting to start.
WAITFORTRIG Scope is finished with the preacquiring state and waiting for a trigger.

If the scope does not preacquire data, it enters the wait for trigger
state.

ACQUIRING Scope is acquiring data. The scope enters this state when it leaves the
wait for trigger state.

FINISHED Scope is finished acquiring data when it has attained the predefined
limit.

INTERRUPTED The user has stopped (interrupted) the scope.
PREACQUIRING Scope acquires a predefined number of samples before triggering.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-176

SCTRIGGERMODE Enumerated Data Type
Scope trigger mode values

Syntax

public enum SCTRIGGERMODE

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum SCTRIGGERMODE specifies scope trigger mode values.

Members

Member Description

FREERUN There is no external trigger condition.. The scope triggers when it is
ready to trigger, regardless of the circumstances.

SOFTWARE Only user intervention can trigger the scope, and it can do so
regardless of circumstances. No other triggering is possible.

SIGNAL Signal must cross a value before the scope is triggered.
SCOPE Scope is triggered by another scope at a predefined trigger point of

the triggering scope. You modify this trigger point with the value of
TriggerScopeSample.

 SCTRIGGERSLOPE Enumerated Data Type

5-177

SCTRIGGERSLOPE Enumerated Data Type
Scope trigger slope values

Syntax

public enum SCTRIGGERSLOPE

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum SCTRIGGERSLOPE specifies scope trigger slope values.

Members

Member Description

EITHER The trigger slope can be rising or falling.
RISING The trigger signal value must be rising when it crosses the trigger

value.
FALLING The trigger signal value must be falling when it crosses the trigger

value.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-178

SCTYPE Enumerated Data Type
Scope type

Syntax

public enum SCTYPE

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum SCTYPE specifies scope type.

Members

Member Description

HOST Specifies scope as type host.
TARGET Specifies scope as type target.
FILE Specifies scope as type file.

 xPCFileSystem.SetCurrentDirectory

5-179

xPCFileSystem.SetCurrentDirectory
Current folder

Syntax

public void SetCurrentDirectory(string path)

Description

Class: xPCFileSystem Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void SetCurrentDirectory(string path) sets the current folder to the
specified path name on the target computer. path is a string that specifies the full path
name to the folder you want to make current.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-180

xPCParameter.SetParam
Change value of parameter on target computer

Syntax

public void SetParam(double[] values)

Description

Class: xPCParameter Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void SetParam(double[] values) sets the parameter to values.
Parameter values is a vector of doubles, assumed to be the size required by the
parameter type.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

 xPCParameter.SetParamAsync

5-181

xPCParameter.SetParamAsync
Asynchronous request to change parameter value on target computer

Syntax

public void SetParamAsync(double[] values)

public void SetParamAsync(double[] values, Object taskId)

Description

Class: xPCParameter Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void SetParamAsync(double[] values) begins an asynchronous request
to set parameter values to values on the target computer. This method does not block
the calling thread. values is a vector of double values to which to set the parameter
values.

public void SetParamAsync(double[] values, Object taskId) receives a
user-defined object when it completes its asynchronous request. values is a vector of
double values to which to set the parameter values. taskId is a user-defined object that
you can have passed to the SetParamAsync method upon completion.

Exception

Exception Condition

InvalidOperation-

Exception

When another thread uses this method.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-182

xPCParameter.SetParamCompleted
Event when xPCParameter.SetParamAsync is complete

Description

Class: xPCParameter Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event SetParamCompletedEventHandler SetParamCompleted occurs
when an asynchronous set parameter operation is complete.

 xPCApplication.Start

5-183

xPCApplication.Start
Start real-time application execution

Syntax

public void Start()

Description

Class: xPCApplication Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Start() starts the real-time application simulation.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-184

xPCFileScopeCollection.StartAll
Start all file scopes in one call

Syntax

public void StartAll()

Description

Class: xPCFileScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void StartAll() sequentially starts all file scopes using one call. This
method starts all the file scopes in the xPCFileScopeCollection.

 xPCHostScopeCollection.StartAll

5-185

xPCHostScopeCollection.StartAll
Start all host scopes in one call

Syntax

public void StartAll()

Description

Class: xPCHostScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void StartAll() sequentially starts all host scopes using one call. This
method starts all the host scopes in the xPCHostScopeCollection.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-186

xPCTargetScopeCollection.StartAll
Start all target scopes in one call

Syntax

public void StartAll()

Description

Class: xPCTargetScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void StartAll() sequentially starts all target scopes using one call. This
method starts all the target scopes in the xPCTargetScopeCollection.

 xPCScope.Start

5-187

xPCScope.Start
Start scope

Syntax

public void Start()

Description

Class: xPCScope Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Start() starts execution of scope on target computer.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-188

xPCApplication.Started
Event after xPCApplication.Start is complete

Syntax

public event EventHandler Started

Description

Class: xPCApplication Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Started occurs after a real-time application start
command is complete.

 xPCApplication.Starting

5-189

xPCApplication.Starting
Event before xPCApplication.Start executes

Syntax

public event EventHandler Starting

Description

Class: xPCApplication Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Starting occurs before a real-time application start
command executes.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-190

xPCApplication.Stop
Stop real-time application execution

Syntax

public void Stop()

Description

Class: xPCApplication Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Stop() stops the real-time application simulation.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

 xPCFileScopeCollection.StopAll

5-191

xPCFileScopeCollection.StopAll
Stop all file scopes in one call

Syntax

public void StopAll()

Description

Class: xPCFileScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void StopAll() stops all file scopes using one call. This method stops all the
file scopes in the xPCFileScopeCollection.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-192

xPCHostScopeCollection.StopAll
Stop all host scopes in one call

Syntax

public void StopAll()

Description

Class: xPCHostScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void StopAll() sequentially stops all host scopes using one call. This method
stops all the host scopes in the xPCHostScopeCollection.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

 xPCTargetScopeCollection.StopAll

5-193

xPCTargetScopeCollection.StopAll
Stop all target scopes in one call

Syntax

public void StopAll()

Description

Class: xPCTargetScopeCollection Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void StopAll() sequentially stops all target scopes using one call. This
method stops all the target scopes in the xPCTargetScopeCollection.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-194

xPCScope.Stop
Stop scope

Syntax

public void Stop()

Description

Class: xPCScope Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Stop() stops execution of scope on target computer.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

 xPCApplication.Stopped

5-195

xPCApplication.Stopped
Event after xPCApplication.Stop is complete

Syntax

public event EventHandler Stopped

Description

Class: xPCApplication Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Stopped occurs after a real-time application stop
command is complete.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-196

xPCApplication.Stopping
Event before xPCApplication.Stop executes

Syntax

public event EventHandler Stopping

Description

Class: xPCApplication Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Stopping occurs before a real-time application stop
command executes.

 xPCTargetPC.tcpPing

5-197

xPCTargetPC.tcpPing
Determine TCP/IP accessibility of remote computer

Syntax

public bool tcpPing()

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public bool tcpPing() allows a real-time application to determine whether a remote
computer is accessible on the TCP/IP network. This method returns a Boolean value.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-198

xPCScope.Trigger
Software-trigger start of data acquisition for scope

Syntax

public void Trigger()

Description

Class: xPCScope Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Trigger() software-triggers start of data acquisition for current scope.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

 xPCSignal.TryGetValue

5-199

xPCSignal.TryGetValue
Status of get signal value at moment of request

Syntax

public virtual bool TryGetValue(ref double result)

Description

Class: xPCSignal Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public virtual bool TryGetValue(ref double result) returns the status
of get signal value at moment of request. If the software detects an error, this method
returns false. Otherwise, the method returns true.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-200

xPCTargetPC.Unload
Unload real-time application from target computer

Syntax

public void Unload()

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Unload() unloads a real-time application from a target computer.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

 xPCTargetPC.UnloadAsync

5-201

xPCTargetPC.UnloadAsync
Asynchronous request to unload real-time application from target computer

Syntax

public void UnloadAsync()

Description

Class: xPCTargetPC Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void UnloadAsync() begins an asynchronous request to unload a real-time
application from a target computer.

Exception

Exception Condition

InvalidOperation-

Exception

When another thread uses this method.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-202

xPCTargetPC.UnloadCompleted
Event when xPCTargetPC.UnloadAsync is complete

Syntax

public event UnloadCompletedEventHandler UnloadCompleted

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event UnloadCompletedEventHandler UnloadCompleted occurs when an
asynchronous real-time application unload operation is complete.

 xPCTargetPC.Unloaded

5-203

xPCTargetPC.Unloaded
Event after xPCTargetPC.Unload is complete

Syntax

public event EventHandler Unloaded

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Unloaded occurs after a real-time application unload
from the target computer is complete.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-204

xPCTargetPC.Unloading
Event before xPCTargetPC.Unload starts

Syntax

public event EventHandler Unloading

Description

Class: xPCTargetPC Class

Event

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public event EventHandler Unloading occurs before a real-time application
unload from a target computer starts.

 xPCFileStream.Write

5-205

xPCFileStream.Write
Write block of bytes to file stream

Syntax

public void Write(byte[] buffer, int count)

Description

Class: xPCFileStream Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void Write(byte[] buffer, int count) writes data from a block of
bytes, buffer, to the current file stream. buffer contains the data to write to the
stream. It is a byte structure. count is an integer. It specifies the number of bytes to
write to the current file stream.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-206

xPCFileStream.WriteByte
Write byte to current position in file stream

Syntax

public void WriteByte(byte value)

Description

Class: xPCFileStream Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public void WriteByte(byte value) writes a byte to the current position in the
file stream. value contains the byte of data that the method writes to the file stream.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

 xPCAppStatus Enumerated Data Type

5-207

xPCAppStatus Enumerated Data Type
Real-time application status return values

Syntax

public enum xPCAppStatus

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum xPCAppStatus specifies real-time application status return values.

Members

Member Description

Stopped Real-time application is stopped
Running Real-time application is running

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-208

xPCDirectoryInfo
Construct new instance of xPCDirectoryInfo class on specified path

Syntax

public xPCDirectoryInfo(xPCTargetPC tgt, string path)

Description

Class: xPCDirectoryInfo Class

Constructor

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCDirectoryInfo(xPCTargetPC tgt, string path) initializes a new
instance of the xPCDirectoryInfo class on the path, path. tgt is an xPCTargetPC object
that represents the target computer for which you initialize the class. path is a string
that represents the path on which to create the xPCDirectoryInfo object.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

 xPCDriveInfo

5-209

xPCDriveInfo
Construct new instance of xPCDriveInfo class

Syntax

public xPCDriveInfo(xPCTargetPC tgt, string driveName)

Description

Class: xPCDriveInfo Class

Constructor

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCDriveInfo(xPCTargetPC tgt, string driveName) initializes a new
instance of the xPCDriveInfo class. tgt is an xPCTargetPC object that represents the
target computer for which you want to the return drive information. driveName is a
string that represents the name of the drive.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-210

xPCException
Construct new instance of xPCException class

Syntax

public xPCException()

public xPCException(string message)

public xPCException(string message, Exception inner)

public xPCException(SerializationInfo info, StreamingContext

context)

public xPCException(int errId, string message, xPCTargetPC tgt)

Description

Class: xPCException Class

Constructor

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCException() initializes a new instance of the xPCException class.

public xPCException(string message) initializes a new instance of the
xPCException class with message. message is a string that contains the text of the error
message.

public xPCException(string message, Exception inner) initializes a new
instance of the xPCException class with message and inner. message is a string.
inner is a nested Exception object.

public xPCException(SerializationInfo info, StreamingContext

context) initializes a new instance of the xPCException class with serialization
information, info, and streaming context, context. info is a SerializationInfo object.
context is a StreamingContext object.

 xPCException

5-211

public xPCException(int errId, string message, xPCTargetPC tgt)

initializes a new instance of the xPCException class. errID is a 32–bit integer that
contains the error ID numbers as defined in matlabroot\toolbox\rtw\targets\xpc
\api\xpcapiconst.h. message is an error message string. tgt is the xPCTargetPC
object that raised the error.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-212

xPCExceptionReason Enumerated Data Type
Exception reasons

Syntax

public enum xPCExceptionReason

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum xPCExceptionReason specifies the reasons for an exception. See “C API
Error Messages” for definitions.

 xPCFileInfo

5-213

xPCFileInfo
Construct new instance of xPCFileInfo class

Syntax

public xPCFileInfo(xPCTargetPC tgt, string fileName)

Description

Class: xPCFileInfo Class

Constructor

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCFileInfo(xPCTargetPC tgt, string fileName) initializes a new
instance of the xPCFileInfo class. tgt is an xPCTargetPC object that represents the
target computer for which you want to return the file information. fileName is a string
that represents the name of the file. It is a fully qualified name of the new file, or the
relative file name in the target computer file system.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-214

xPCFileMode Enumerated Data Type
Open file with permissions

Syntax

public enum xPCFileMode

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum xPCFileMode specifies how the target computer is to open a file with
permissions.

Members

Member Description

CreateWrite Open file for writing and discard existing contents.
CreateReadWrite Open or create file for reading and writing and discard existing

contents
OpenRead Open file for reading
OpenReadWrite Open (but do not create) file for reading and writing
AppendWrite Open or create file for writing and append data to end of file
AppendReadWrite Open or create file for reading and writing and append data to end of

file

 xPCFileStream

5-215

xPCFileStream
Construct new instance of xPCFileStream class

Syntax

public xPCFileStream(xPCTargetPC tgt, string path, xPCFileMode

fmode)

Description

Class: xPCFileStream Class

Method

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCFileStream(xPCTargetPC tgt, string path, xPCFileMode

fmode) initializes a new instance of the xPCFileStream class with the path name
and creation mode. tgt is a reference to an xPCTargetPC object. path is a relative or
absolute path name for the file that the current xPCFileStream object encapsulates.
fmode is an xPCFileMode constant that determines how to open or create the file. See
xPCFileMode Enumerated Data Type for file mode options.

Exception

Exception Condition

xPCException When problem occurs, query xPCException object Reason
property.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-216

xPCFileSystemInfo
Construct new instance of xPCFileSystemInfo class

Syntax

public xPCFileSystemInfo(xPCTargetPC tgt)

Description

Class: xPCFileSystemInfo Class

Constructor

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCFileSystemInfo(xPCTargetPC tgt) initializes a new instance of the
xPCFileSystemInfo class. tgt is an xPCTargetPC object that represents the target
computer for which you want the file system information.

 xPCLogMode Enumerated Data Type

5-217

xPCLogMode Enumerated Data Type
Specify log mode values

Syntax

public enum xPCLogMode

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum xPCLogMode specifies log mode values.

Members

Member Description

Normal Time-equidistant logging to log data point at every time interval.
Value Log data point only when output signal from OutputLog increments by

a specified value

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-218

xPCLogType Enumerated Data Type
Logging type values

Syntax

public enum xPCLogType

Description

Namespace: MathWorks.xPCTarget.FrameWork

Enumerated Data Type

Syntax Language: C#

public enum xPCLogType specifies logging type values.

Members

Member Description

OUTPUTLOG Output log
STATELOG State log
TIMELOG Time log
TETLOG TET log

 xPCProtocol Enumerated Data Type

5-219

xPCProtocol Enumerated Data Type
Development computer and target computer communication medium

Syntax

public enum XPCProtocol

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum XPCProtocol specifies development computer and target computer
communication medium.

Members

Member Description

RS232 Serial link

Note: RS232 communication type will be removed in a future release.
Use TCPIP instead.

TCPIP Ethernet link

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-220

xPCRS232BaudRate Enumerated Data Type
Serial link baud rate

Syntax

public enum XPCRS232BaudRate

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum XPCRS232BaudRate specifies serial link baud rate

Members

Member Description

BAUD1200 1200 baud rate
BAUD2400 2400 baud rate
BAUD4800 4800 baud rate
BAUD9600 9600 baud rate
BAUD19200 19200 baud rate
BAUD38400 38400 baud rate
BAUD57600 57600 baud rate
BAUD115200 115200 baud rate

Note: RS-232 communication type will be removed in a future release. Use TCP/IP
instead.

 xPCRS232Comport Enumerated Data Type

5-221

xPCRS232Comport Enumerated Data Type
Serial link port

Syntax

public enum XPCRS232CommPort

Description

Enumerated Data Type

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public enum XPCRS232CommPort specifies values of the supported serial link ports
used for the connection on the development computer.

Members

Member Description

COM1 Serial port COM 0
COM2 Serial port COM 1

Note: RS-232 communication type will be removed in a future release. Use TCP/IP
instead.

5 Simulink Real-Time API Reference for Microsoft .NET Framework

5-222

xPCTargetPC
Construct new instance of xPCTargetPC class

Syntax

public xPCTargetPC()

Description

Class: xPCTargetPC Class

Constructor

Namespace: MathWorks.xPCTarget.FrameWork

Syntax Language: C#

public xPCTargetPC() initializes a new instance of the xPCTargetPC class.

6

Simulink Real-Time API Reference for
C

6 Simulink Real-Time API Reference for C

6-2

dirStruct
Type definition for file system folder information structure

Syntax
typedef struct {

 char Name[8];

 char Ext[3];

 char Day;

 int Month;

 int Year;

 int Hour;

 int Min;

 int isDir;

 unsigned long Size;

} dirStruct;

Fields

Name This value contains the name of the file or folder.
Ext This value contains the file type of the element, if the

element is a file (isDir is 0). If the element is a folder
(isDir is 1), this field is empty.

Day This value contains the day the file or folder was last
modified.

Month This value contains the month the file or folder was last
modified.

Year This value contains the year the file or folder was last
modified.

Hour This value contains the hour the file or folder was last
modified.

Min This value contains the minute the file or folder was last
modified.

isDir This value indicates if the element is a file (0) or folder (1).
If it is a folder, Bytes has a value of 0.

 dirStruct

6-3

Size This value contains the size of the file in bytes. If the
element is a folder, this value is 0.

Description

The dirStruct structure contains information for a folder in the file system.

See Also

API function xPCFSDirItems

6 Simulink Real-Time API Reference for C

6-4

diskinfo
Type definition for file system disk information structure

Syntax
typedef struct {

 char Label[12];

 char DriveLetter;

 char Reserved[3];

 unsigned int SerialNumber;

 unsigned int FirstPhysicalSector;

 unsigned int FATType;

 unsigned int FATCount;

 unsigned int MaxDirEntries;

 unsigned int BytesPerSector;

 unsigned int SectorsPerCluster;

 unsigned int TotalClusters;

 unsigned int BadClusters;

 unsigned int FreeClusters;

 unsigned int Files;

 unsigned int FileChains;

 unsigned int FreeChains;

 unsigned int LargestFreeChain;

} diskinfo;

Fields

Label This value contains the zero-terminated string that
contains the volume label. The string is empty if the
volume has no label.

DriveLetter This value contains the drive letter, in uppercase.
Reserved Reserved.
SerialNumber This value contains the volume serial number.
FirstPhysicalSector This value contains the logical block addressing (LBA)

address of the logical drive boot record. For 3.5-inch disks,
this value is 0.

 diskinfo

6-5

FATType This value contains the type of file system found. It can
contain 12 , 16 , or 32 for FAT-12, FAT-16, or FAT-32
volumes, respectively.

FATCount This value contains the number of FAT partitions on the
volume.

MaxDirEntries This value contains the size of the root folder. For FAT-32
systems, this value is 0.

BytesPerSector This value contains the sector size. This value is most
likely to be 512.

SectorsPerCluster This value contains, in sectors, the size of the smallest unit
of storage that can be allocated to a file.

TotalClusters This value contains the number of file storage clusters on
the volume.

BadClusters This value contains the number of clusters that have been
marked as bad. These clusters are unavailable for file
storage.

FreeClusters This value contains the number of clusters that are
currently available for storage.

Files This value contains the number of files, including folders,
on the volume. This number excludes the root folder and
files that have an allocated file size of 0.

FileChains This value contains the number of contiguous cluster
chains. On a completely unfragmented volume, this value
is identical to the value of Files.

FreeChains This value contains the number of contiguous cluster
chains of free clusters. On a completely unfragmented
volume, this value is 1.

LargestFreeChain This value contains the maximum allocated file size,
in number of clusters, for a newly allocated contiguous
file. On a completely unfragmented volume, this value is
identical to FreeClusters.

Description

The diskinfo structure contains information for file system disks.

6 Simulink Real-Time API Reference for C

6-6

See Also

API function xPCFSDiskInfo

 fileinfo

6-7

fileinfo
Type definition for file information structure

Syntax
typedef struct {

int FilePos;

int AllocatedSize;

int ClusterChains;

int VolumeSerialNumber;

char FullName[255];

}fileinfo;

Fields

FilePos This value contains the current file pointer.
AllocatedSize This value contains the currently allocated file size.
ClusterChains This value indicates how many separate cluster chains are

allocated for the file.
VolumeSerialNumber This value holds the serial number of the volume the file

resides on.
FullName This value contains a copy of the complete path name of

the file. This field is valid only while the file is open.

Description

The fileinfo structure contains information for files in the file system.

See Also

xPCFSFileInfo

6 Simulink Real-Time API Reference for C

6-8

lgmode
Type definition for logging options structure

Syntax
typedef struct {

 int mode;

 double incrementvalue;

} lgmode;

Fields

mode This value indicates the type of logging you want. Specify
LGMOD_TIME for time-equidistant logging. Specify
LGMOD_VALUE for value-equidistant logging.

incrementvalue If you set mode to LGMOD_VALUE for value-equidistant
data, this option specifies the increment (difference in
amplitude) value between logged data points. A data point
is logged only when an output signal or a state changes by
incrementvalue.

If you set mode to LGMOD_TIME, incrementvalue is ignored.

Description

The lgmode structure specifies data logging options. The mode variable accepts either
the numeric values 0 or 1 or their equivalent constants LGMOD_TIME or LGMOD_VALUE
from xpcapiconst.h.

See Also

API functions xPCSetLogMode, xPCGetLogMode

 scopedata

6-9

scopedata
Type definition for scope data structure

Syntax
typedef struct {

 int number;

 int type;

 int state;

 int signals[10];

 int numsamples;

 int decimation;

 int triggermode;

 int numprepostsamples;

 int triggersignal

 int triggerscope;

 int triggerscopesample;

 double triggerlevel;

 int triggerslope;

} scopedata;

Fields
number The scope number.
type Determines whether the scope is displayed on the

development computer or on the target computer. Values
are one of the following:

 1 Host
 2 Target
state Indicates the scope state. Values are one of the following:
 0 Waiting to start
 1 Scope is waiting for a trigger
 2 Data is being acquired
 3 Acquisition is finished
 4 Scope is stopped (interrupted)

6 Simulink Real-Time API Reference for C

6-10

 5 Scope is preacquiring data
signals List of signal indices from the target object to display on

the scope.
numsamples Number of contiguous samples captured during the

acquisition of a data package.
decimation A number, N, meaning every Nth sample is acquired in a

scope window.
triggermode Trigger mode for a scope. Values are one of the following:
 0 FreeRun (default)
 1 Software
 2 Signal
 3 Scope
numprepostsamples If this value is less than 0, this is the number of samples

to be saved before a trigger event. If this value is greater
than 0, this is the number of samples to skip after the
trigger event before data acquisition begins.

triggersignal If triggermode is 2 (Signal), identifies the block output
signal to use for triggering the scope. Identify the signal
with a signal index.

triggerscope If triggermode is 3 (Scope), identifies the scope to use
for a trigger. A scope can be set to trigger when another
scope is triggered.

triggerscopesample If triggermode is 3 (Scope), specifies the number of
samples to be acquired by the triggering scope before
triggering a second scope. This must be a nonnegative
value.

triggerlevel If triggermode is 2 (Signal), indicates the value the
signal has to cross to trigger the scope to start acquiring
data. The trigger level can be crossed with either a rising
or falling signal.

triggerslope If triggermode is 2 (Signal), indicates whether the
trigger is on a rising or falling signal. Values are:

 0 Either rising or falling (default)
 1 Rising

 scopedata

6-11

 2 Falling

Description

The scopedata structure holds the data about a scope used in the functions
xPCGetScope and xPCSetScope. In the structure, the fields are as in the various
xPCGetSc* functions (for example, state is as in xPCScGetState, signals is as
in xPCScGetSignals, etc.). The signal vector is an array of the signal identifiers,
terminated by -1.

See Also

API functions xPCSetScope, xPCGetScope, xPCScGetType, xPCScGetState,
xPCScGetSignals, xPCScGetNumSamples, xPCScGetDecimation,
xPCScGetTriggerMode, xPCScGetNumPrePostSamples, xPCScGetTriggerSignal,
xPCScGetTriggerScope, xPCScGetTriggerLevel, xPCScGetTriggerSlope

6 Simulink Real-Time API Reference for C

6-12

xPCAddScope
Create new scope

Prototype
void xPCAddScope(int port, int scType, int scNum);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

scType Enter the type of scope.
scNum Enter a number for a new scope. Values are 1, 2, 3. . .

Description

The xPCAddScope function creates a new scope on the target computer. For scType,
scopes can be of type host or target, depending on the value of scType:

• SCTYPE_HOST for type host
• SCTYPE_TARGET for type target
• SCTYPE_FILE for type file

Constants for scType are defined in the header file xpcapiconst.h as SCTYPE_HOST,
SCTYPE_TARGET, and SCTYPE_FILE.

Calling the xPCAddScope function with scNum having the number of an existing scope
produces an error. Use xPCGetScopes to find the numbers of existing scopes.

See Also

API functions xPCScAddSignal, xPCScRemSignal, xPCRemScope, xPCSetScope,
xPCGetScope, xPCGetScopes

 xPCAddScope

6-13

Target object method SimulinkRealTime.target.addscope

6 Simulink Real-Time API Reference for C

6-14

xPCAverageTET
Return average task execution time

Prototype
double xPCAverageTET(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

Return

The xPCAverageTET function returns the average task execution time (TET) for the
real-time application.

Description

The xPCAverageTET function returns the TET for the real-time application. You can use
this function when the real-time application is running or when it is stopped.

See Also

API functions xPCMaximumTET, xPCMinimumTET

Property AvgTET of SimulinkRealTime.target

 xPCCloseConnection

6-15

xPCCloseConnection
Close RS-232 or TCP/IP communication connection

Prototype
void xPCCloseConnection(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

Description

The xPCCloseConnection function closes the RS-232 or TCP/IP communication
channel opened by xPCOpenSerialPort, xPCOpenTcpIpPort, or
xPCOpenConnection. Unlike xPCClosePort, it preserves the connection information
such that a subsequent call to xPCOpenConnection succeeds without the need to
resupply communication data such as the IP address or port number. To completely
close the communication channel, call xPCDeRegisterTarget. Calling the
xPCCloseConnection function followed by calling xPCDeRegisterTarget is
equivalent to calling xPCClosePort.

Note: RS-232 communication type will be removed in a future release. Use TCP/IP
instead.

See Also

API functions xPCOpenConnection, xPCOpenSerialPort, xPCOpenTcpIpPort,
xPCReOpenPort, xPCRegisterTarget, xPCDeRegisterTarget

6 Simulink Real-Time API Reference for C

6-16

xPCClosePort
Close RS-232 or TCP/IP communication connection

Prototype
void xPCClosePort(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

Description

The xPCClosePort function closes the RS-232 or TCP/IP communication channel
opened by either xPCOpenSerialPort or by xPCOpenTcpIpPort. Calling this function
is equivalent to calling xPCCloseConnection and xPCDeRegisterTarget.

Note: RS-232 communication type will be removed in a future release. Use TCP/IP
instead.

See Also

API functions xPCOpenSerialPort, xPCOpenTcpIpPort, xPCReOpenPort,
xPCOpenConnection, xPCCloseConnection, xPCRegisterTarget,
xPCDeRegisterTarget

Target object method SimulinkRealTime.target.close

 xPCDeRegisterTarget

6-17

xPCDeRegisterTarget
Delete target communication properties from Simulink Real-Time API library

Prototype
void xPCDeRegisterTarget(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

Description

The xPCDeRegisterTarget function causes the Simulink Real-Time API library to
completely “forget” about the target communication properties. You use this at the
end of a session in which you use xPCOpenConnection and xPCCloseConnection
to connect and disconnect from the target without entering the properties each
time. It works similarly to xPCClosePort, but does not close the connection to
the target computer. Before calling this function, you must first call the function
xPCCloseConnection to close the connection to the target computer. The combination
of calling the xPCCloseConnection and xPCDeRegisterTarget functions has the
same result as calling xPCClosePort.

See Also

API functions xPCRegisterTarget, xPCOpenTcpIpPort, xPCOpenSerialPort,
xPCClosePort, xPCReOpenPort, xPCOpenConnection, xPCCloseConnection,
xPCTargetPing

6 Simulink Real-Time API Reference for C

6-18

xPCErrorMsg
Return text description for error message

Prototype
char *xPCErrorMsg(int error_number, char *error_message);

Arguments

error_number Enter the constant of an error.
error_message The xPCErrorMsg function copies the error message string into

the buffer pointed to by error_message. error_message is then
returned. You can later use error_message in a function such as
printf.

If error_message is NULL, the xPCErrorMsg function returns a
pointer to a statically allocated string.

Return

The xPCErrorMsg function returns a string associated with the error error_number.

Description

The xPCErrorMsg function returns error_message, which makes it convenient to
use in a printf or similar statement. Use the xPCGetLastError function to get the
constant for which you are getting the message.

See Also

API functions xPCSetLastError, xPCGetLastError

 xPCFreeAPI

6-19

xPCFreeAPI
Unload Simulink Real-Time DLL

Prototype
void xPCFreeAPI(void);

Description

The xPCFreeAPI function unloads the Simulink Real-Time dynamic link library. You
must execute this function once at the end of the application to unload the Simulink
Real-Time API DLL. This frees the memory allocated to the functions. This function is
defined in the file xpcinitfree.c. Link this file with your application.

See Also

API functions xPCInitAPI, xPCNumLogWraps, xPCNumLogSamples,
xPCMaxLogSamples, xPCGetStateLog, xPCGetTETLog, xPCSetLogMode,
xPCGetLogMode

6 Simulink Real-Time API Reference for C

6-20

xPCFSCD
Change current folder on target computer to specified path

Prototype
void xPCFSCD(int port, char *dir);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

dir Enter the path on the target computer to change to.

Description

The xPCFSCD function changes the current folder on the target computer to the path
specified in dir. Use the xPCFSGetPWD function to show the current folder of the target
computer.

See Also

API function xPCFSGetPWD

File object method SimulinkRealTime.fileSystem.cd

 xPCFSCloseFile

6-21

xPCFSCloseFile
Close file on target computer

Prototype
void xPCFSCloseFile(int port, int fileHandle);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

fileHandle Enter the file handle of an open file on the target computer.

Description

The xPCFSCloseFile function closes the file associated with fileHandle on the target
computer. fileHandle is the handle of a file previously opened by the xPCFSOpenFile
function.

See Also

API functions xPCFSOpenFile, xPCFSReadFile, xPCFSWriteFile

File object method SimulinkRealTime.fileSystem.fclose

6 Simulink Real-Time API Reference for C

6-22

xPCFSDir
Get contents of specified folder on target computer

Prototype
void xPCFSDir(int port, const char *path, char *data, int numbytes);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

path Enter the path on the target computer.
data The contents of the folder are stored in data, whose allocated size is

specified in numbytes.
numbytes Enter the size, in bytes, of the array data.

Description

The xPCFSDir function copies the contents of the target computer folder specified by
path into data. The xPCFSDir function returns the listing in the data array, which
must be of size numbytes. Use the xPCFSDirSize function to obtain the size of the
folder listing for the numbytes parameter.

See Also

API function xPCFSDirSize

File object method SimulinkRealTime.fileSystem.dir

 xPCFSDirItems

6-23

xPCFSDirItems
Get contents of specified folder on target computer

Prototype
void xPCFSDirItems(int port, const char *path, dirStruct *dirs, int numDirItems);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

path Enter the path on the target computer.
dirs Enter the structure to contain the contents of the folder.
numDirItems Enter the number of items in the folder.

Description

The xPCFSDirItems function copies the contents of the target computer folder specified
by path. The xPCFSDirItems function copies the listing into the dirs structure, which
must be of size numDirItems. Use the xPCFSDirStructSize function to obtain the size
of the folder for the numDirItems parameter.

See Also

API functions xPCFSDirStructSize, dirStruct

File object method SimulinkRealTime.fileSystem.dir

6 Simulink Real-Time API Reference for C

6-24

xPCFSDirSize
Return size of specified folder listing on target computer

Prototype
int xPCFSDirSize(int port, const char *path);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

path Enter the folder path on the target computer.

Return

The xPCFSDirSize function returns the size, in bytes, of the specified folder listing. If
this function detects an error, it returns -1.

Description

The xPCFSDirSize function returns the size, in bytes, of the buffer required to list the
folder contents on the target computer. Use this size as the numbytes parameter in the
xPCFSDir function.

See Also

API function xPCFSDirItems

File object method SimulinkRealTime.fileSystem.dir

 xPCFSDirStructSize

6-25

xPCFSDirStructSize
Get number of items in folder

Prototype
int xPCFSDirStructSize(int port, const char *path);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

path Enter the folder path on the target computer.

Return

The xPCFSDirStructSize function returns the number of items in the folder on the
target computer. If this function detects an error, it returns -1.

Description

The xPCFSDirStructSize function returns the number of items in the folder on the
target computer. Use this size as the numDirItems parameter in the xPCFSDirItems
function.

See Also

API function xPCFSDir

File object method SimulinkRealTime.fileSystem.dir

6 Simulink Real-Time API Reference for C

6-26

xPCFSDiskInfo
Information about target computer file system

Prototype
diskinfo xPCFSDiskInfo(int port, const char *driveletter);

Arguments

port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

driveletter Enter the drive letter of the file system for which you
want information.

Description

The xPCFSDiskInfo function returns disk information for the file system of the
specified target computer drive, driveletter. This function returns this information in
the diskinfo structure.

See Also

API structure SimulinkRealTime.fileSystem.diskinfo

 xPCFSFileInfo

6-27

xPCFSFileInfo
Return information for open file on target computer

Prototype
fileinfo xPCFSFileInfo(int port, int fileHandle);

Arguments

port Enter the value returned by either the
function xPCOpenSerialPort or the function
xPCOpenTcpIpPort.

fileHandle Enter the file handle of an open file on the target
computer.

Description

The xPCFSFileInfo function returns information about the specified open file,
filehandle, in a structure of type fileinfo.

See Also

Structure SimulinkRealTime.fileSystem.fileinfo

6 Simulink Real-Time API Reference for C

6-28

xPCFSGetError
Get text description for error number on target computer file system

Prototype
void xPCFSGetError(int port, unsigned int error_number,

char *error_message);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

error_number Enter the constant of an error.
error_message The string of the message associated with the error

error_number is stored in error_message.

Description

The xPCFSGetError function gets the error_message associated with error_number.
This enables you to use the error message in a printf or similar statement.

 xPCFSGetFileSize

6-29

xPCFSGetFileSize
Return size of file on target computer

Prototype
int xPCFSGetFileSize(int port, int fileHandle);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

fileHandle Enter the file handle of an open file on the target computer.

Return

Return the size of the specified file in bytes. If this function detects an error, it returns
-1.

Description

The xPCFSGetFileSize function returns the size, in bytes, of the file associated with
fileHandle on the target computer. fileHandle is the handle of a file previously
opened by the xPCFSOpenFile function.

See Also

API functions xPCFSOpenFile, xPCFSReadFile

File object methods SimulinkRealTime.fileSystem.fopen and
SimulinkRealTime.fileSystem.fread

6 Simulink Real-Time API Reference for C

6-30

xPCFSGetPWD
Get current folder of target computer

Prototype
void xPCFSGetPWD(int port, char *pwd);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

pwd The path of the current folder is stored in pwd.

Description

The xPCFSGetPWD function places the path of the current folder on the target computer
in pwd, which must be allocated by the caller.

See Also

File object method SimulinkRealTime.fileSystem.pwd

 xPCFSMKDIR

6-31

xPCFSMKDIR
Create new folder on target computer

Prototype
void xPCFSMKDIR(int port, const char *dirname);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

dirname Enter the name of the folder to create on the target computer.

Description

The xPCFSMKDIR function creates the folder dirname in the current folder of the target
computer.

See Also

API function xPCFSGetPWD

File object method SimulinkRealTime.fileSystem.mkdir

6 Simulink Real-Time API Reference for C

6-32

xPCFSOpenFile
Open file on target computer

Prototype
int xPCFSOpenFile(int port, const char *filename,

const char *permission);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

filename Enter the name of the file to open on the target computer.
permission Enter the read/write permission with which to open the file.

Values are r (read) or w (read/write).

Return

The xPCFSOpenFile function returns the file handle for the opened file. If function
detects an error, it returns -1.

Description

The xPCFSOpenFile function opens the specified file, filename, on the target
computer. If the file does not exist, the xPCFSOpenFile function creates filename, then
opens it. You can open a file for read or read/write access.

See Also

API functions xPCFSCloseFile, xPCFSGetFileSize, xPCFSReadFile,
xPCFSWriteFile

 xPCFSOpenFile

6-33

File object methods SimulinkRealTime.fileSystem.fclose,
SimulinkRealTime.fileSystem.filetable,
SimulinkRealTime.fileSystem.fwrite SimulinkRealTime.fileSystem.fopen
and SimulinkRealTime.fileSystem.fread

6 Simulink Real-Time API Reference for C

6-34

xPCFSReadFile
Read open file on target computer

Prototype
void xPCFSReadFile(int port, int fileHandle, int start,

int numbytes, unsigned char *data);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

fileHandle Enter the file handle of an open file on the target computer.
start Enter an offset from the beginning of the file from which this function

can start to read.
numbytes Enter the number of bytes this function is to read from the file.
data The contents of the file are stored in data.

Description

The xPCFSReadFile function reads an open file on the target computer and places
the results of the read operation in the array data. fileHandle is the file handle of
a file previously opened by xPCFSOpenFile. You can specify that the read operation
begin at the beginning of the file (default) or at a certain offset into the file (start). The
numbytes parameter specifies how many bytes the xPCFSReadFile function is to read
from the file.

See Also

API functions xPCFSCloseFile, xPCFSGetFileSize, xPCFSOpenFile,
xPCFSWriteFile

 xPCFSReadFile

6-35

File object methods SimulinkRealTime.fileSystem.fopen and
SimulinkRealTime.fileSystem.fread

6 Simulink Real-Time API Reference for C

6-36

xPCFSRemoveFile
Remove file from target computer

Prototype
void xPCFSRemoveFile(int port, const char *filename);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

filename Enter the name of a file on the target computer.

Description

The xPCFSRemoveFile function removes the file named filename from the target
computer file system. filename can be a relative or absolute path name on the target
computer.

See Also

File object method SimulinkRealTime.fileSystem.removefile

 xPCFSRMDIR

6-37

xPCFSRMDIR
Remove folder from target computer

Prototype
void xPCFSRMDIR(int port, const char *dirname);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

dirname Enter the name of a folder on the target computer.

Description

The xPCFSRMDIR function removes a folder named dirname from the target computer
file system. dirname can be a relative or absolute path-name on the target computer.

See Also

File object method SimulinkRealTime.fileSystem.rmdir

6 Simulink Real-Time API Reference for C

6-38

xPCFSScGetFilename
Get name of file for scope

Prototype
const char *xPCFSScGetFilename(int port, int scNum, char *filename);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.
filename The name of the file for the specified scope is stored in filename.

Return

Returns the value of filename, the name of the file for the scope.

Description

The xPCFSScGetFilename function returns the name of the file to which scope scNum
will save signal data. filename points to a caller-allocated character array to which the
filename is copied.

See Also

API function xPCFSScSetFilename

Property Filename of SimulinkRealTime.fileSystem

 xPCFSScGetWriteMode

6-39

xPCFSScGetWriteMode
Get write mode of file for scope

Prototype
int xPCFSScGetWriteMode(int port, int scNum);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return

Returns the number indicating the write mode. Values are

0 Lazy mode. The FAT entry is updated only when the file is closed and not
during each file write operation. This mode is faster, but if the system
crashes before the file is closed, the file system might not have the actual
file size (the file contents, however, will be intact).

1 Commit mode. Each file write operation simultaneously updates the FAT
entry for the file. This mode is slower, but the file system maintains the
actual file size.

Description

The xPCFSScGetWriteMode function returns the write mode of the file for the scope.

See Also

API function xPCFSScSetWriteMode

6 Simulink Real-Time API Reference for C

6-40

Property WriteMode of SimulinkRealTime.fileSystem

 xPCFSScGetWriteSize

6-41

xPCFSScGetWriteSize
Get block write size of data chunks

Prototype
unsigned int xPCFSScGetWriteSize(int port, int scNum);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return

Returns the block size, in bytes, of the data chunks.

Description

The xPCFSScGetWriteSize function gets the block size, in bytes, of the data chunks.

See Also

API function xPCFSScSetWriteSize

Property WriteSize of SimulinkRealTime.fileSystem

6 Simulink Real-Time API Reference for C

6-42

xPCFSScSetFilename
Specify name for file to contain signal data

Prototype
void xPCFSScSetFilename(int port, int scNum,

const char *filename);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

scNum Enter the scope number.
filename Enter the name of a file to contain the signal data.

Description

The xPCFSScSetFilename function sets the name of the file to which the scope will save
the signal data. The Simulink Real-Time software creates this file in the target computer
file system. Note that you can only call this function when the scope is stopped.

See Also

API function xPCFSScGetFilename

Property Filename of SimulinkRealTime.fileSystem

 xPCFSScSetWriteMode

6-43

xPCFSScSetWriteMode
Specify when file allocation table entry is updated

Prototype
void xPCFSScSetWriteMode(int port, int scNum, int writeMode);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

scNum Enter the scope number.
writeMode Enter an integer for the write mode:
 0 Enables lazy write mode
 1 Enables commit write mode

Description

The xPCFSScSetWriteMode function specifies when a file allocation table (FAT) entry is
updated. Both modes write the signal data to the file, as follows:

0 Lazy mode. The FAT entry is updated only when the file is closed and not
during each file write operation. This mode is faster, but if the system
crashes before the file is closed, the file system might not have the actual
file size (the file contents, however, will be intact).

1 Commit mode. Each file write operation simultaneously updates the FAT
entry for the file. This mode is slower, but the file system maintains the
actual file size.

See Also

API function xPCFSScGetWriteMode

6 Simulink Real-Time API Reference for C

6-44

Property WriteMode of SimulinkRealTime.fileSystem

 xPCFSScSetWriteSize

6-45

xPCFSScSetWriteSize
Specify that memory buffer collect data in multiples of write size

Prototype
void xPCFSScSetWriteSize(int port, int scNum, unsigned int

writeSize);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.
writeSize Enter the block size, in bytes, of the data chunks.

Description

The xPCFSScSetWriteSize function specifies that a memory buffer collect data in
multiples of writeSize. By default, this parameter is 512 bytes, which is the typical
disk sector size. Using a block size that is the same as the disk sector size provides better
performance. writeSize must be a multiple of 512.

See Also

API function xPCFSScGetWriteSize

Property WriteSize of SimulinkRealTime.fileSystem

6 Simulink Real-Time API Reference for C

6-46

xPCFSWriteFile
Write to file on target computer

Prototype
void xPCFSWriteFile(int port, int fileHandle, int numbytes,

const unsigned char *data);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

fileHandle Enter the file handle of an open file on the target computer.
numbytes Enter the number of bytes this function is to write into the file.
data The contents to write to fileHandle are stored in data.

Description

The xPCFSWriteFile function writes the contents of the array data to the file specified
by fileHandle on the target computer. The fileHandle parameter is the handle of a
file previously opened by xPCFSOpenFile. numbytes is the number of bytes to write to
the file.

See Also

API functions xPCFSCloseFile, xPCFSGetFileSize, xPCFSOpenFile,
xPCFSReadFile

 xPCGetAPIVersion

6-47

xPCGetAPIVersion
Get version number of Simulink Real-Time API

Prototype
const char *xPCGetAPIVersion(void);

Return

The xPCGetApiVersion function returns a string with the version number of the
Simulink Real-Time kernel on the target computer.

Description

The xPCGetApiVersion function returns a string with the version number of the
Simulink Real-Time kernel on the target computer. The string is a constant string within
the API DLL. Do not modify this string.

See Also

API function xPCGetTargetVersion

6 Simulink Real-Time API Reference for C

6-48

xPCGetAppName
Return real-time application name

Prototype
char *xPCGetAppName(int port, char *model_name);

Arguments
port Enter the value returned by either the function

xPCOpenSerialPort or the function xPCOpenTcpIpPort.
model_name The xPCGetAppName function copies the real-time application

name string into the buffer pointed to by model_name.
model_name is then returned. You can later use model_name in a
function such as printf.

Note that the maximum size of the buffer is 256 bytes. To reserve
enough space for the application name string, allocate a buffer of
size 256 bytes.

Return
The xPCGetAppName function returns a string with the name of the real-time
application.

Description
The xPCGetAppName function returns the name of the real-time application. You can use
the return value, model_name, in a printf or similar statement. In case of error, the
name string is unchanged.

Examples
Allocate 256 bytes for the buffer appname.

 xPCGetAppName

6-49

char *appname=malloc(256);

xPCGetAppName(iport,appname);

appname=realloc(appname,strlen(appname)+1);

...

free(appname);

See Also

API function xPCIsAppRunning

Target object property Application

6 Simulink Real-Time API Reference for C

6-50

xPCGetEcho
Return display mode for target message window

Prototype
int xPCGetEcho(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

Return

The xPCGetEcho function returns the number indicating the display mode. Values are

1 Display is on. Messages are displayed in the message display window on
the target.

0 Display is off.

Return

The xPCGetEcho function the display mode of the target computer using communication
channel port. If the function detects an error, it returns -1.

Description

The xPCGetEcho function returns the display mode of the target computer using
communication channel port. Messages include the status of downloading the real-time
application, changes to parameters, and changes to scope signals.

 xPCGetEcho

6-51

See Also

API function xPCSetEcho

6 Simulink Real-Time API Reference for C

6-52

xPCGetExecTime
Return real-time application execution time

Prototype
double xPCGetExecTime(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

Return

The xPCGetExecTime function returns the current execution time for a real-time
application. If the function detects an error, it returns -1.

Description

The xPCGetExecTime function returns the current execution time for the running real-
time application. If the real-time application is stopped, the value is the last running
time when the real-time application was stopped. If the real-time application is running,
the value is the current running time.

See Also

API functions xPCSetStopTime, xPCGetStopTime

Property ExecTime of SimulinkRealTime.target

 xPCGetLastError

6-53

xPCGetLastError
Return constant of last error

Prototype
int xPCGetLastError(void);

Return

The xPCGetLastError function returns the error constant for the last reported error. If
the function did not detect an error, it returns 0.

Description

The xPCGetLastError function returns the constant of the last reported error by
another API function. This value is reset every time you call a new function. Therefore,
you should check this constant value immediately after a call to an API function. For a
list of error constants and messages, see “C API Error Messages”.

See Also

API functions xPCErrorMsg, xPCSetLastError

6 Simulink Real-Time API Reference for C

6-54

xPCGetLoadTimeOut
Return timeout value for communication between development and target computers

Prototype
int xPCGetLoadTimeOut(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

Return

The xPCGetLoadTimeOut function returns the number of seconds allowed for the
communication between the development computer and real-time application. If the
function detects an error, it returns -1.

Description

The xPCGetLoadTimeOut function returns the number of seconds allowed for the
communication between the development computer and the real-time application. When
a Simulink Real-Time API function initiates communication between the development
and target computers, it waits for a certain amount of time before checking to see if the
communication is complete. In the case where communication with the target computer
is not complete, the function returns a timeout error.

For example, when you load a new real-time application onto the target computer, the
function xPCLoadApp waits for a certain amount of time before checking to see if the
initialization of the real-time application is complete. In the case where initialization of
the real-time application is not complete, the function xPCLoadApp returns a timeout
error. By default, xPCLoadApp checks for the readiness of the target computer for up
to 5 seconds. However, for larger models or models requiring longer initialization (for

 xPCGetLoadTimeOut

6-55

example, those with thermocouple boards), the default might not be long enough and
a spurious timeout is generated. Other functions that communicate with the target
computer will wait for timeOut seconds before declaring a timeout event. The function
xPCSetLoadTimeOut sets the timeout to a different number.

Use the xPCGetLoadTimeOut function if you suspect that the current number of seconds
(the timeout value) is too short. Then use the xPCSetLoadTimeOut function to set the
timeout to a higher number.

See Also

API functions xPCLoadApp, xPCSetLoadTimeOut

xPCUnloadApp

“Increase the Time for Downloads”

6 Simulink Real-Time API Reference for C

6-56

xPCGetLogMode
Return logging mode and increment value for real-time application

Prototype
lgmode xPCGetLogMode(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

Return

The xPCGetLogMode function returns the logging mode in the lgmode structure. If the
logging mode is 1 (LGMOD_VALUE), this function also returns an increment value in the
lgmode structure. If an error occurs, this function returns -1.

Description

The xPCGetLogMode function gets the logging mode and increment value for the
current real-time application. The increment (difference in amplitude) value is measured
between logged data points. A data point is logged only when an output signal or a state
changes by the increment value.

See Also

API function xPCSetLogMode

API structure lgmode

 xPCGetNumOutputs

6-57

xPCGetNumOutputs
Return number of outputs

Prototype
int xPCGetNumOutputs(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

Return

The xPCGetNumOutputs function returns the number of outputs in the current real-time
application. If the function detects an error, it returns -1.

Description

The xPCGetNumOutputs function returns the number of outputs in the real-time
application. The number of outputs equals the sum of the input signal widths of the
output blocks at the root level of the Simulink model.

See Also

API functions xPCGetOutputLog, xPCGetNumStates, xPCGetStateLog

6 Simulink Real-Time API Reference for C

6-58

xPCGetNumParams
Return number of tunable parameters

Prototype
int xPCGetNumParams(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

Return

The xPCGetNumParams function returns the number of tunable parameters in the real-
time application. If the function detects an error, it returns -1.

Description

The xPCGetNumParams function returns the number of tunable parameters in the real-
time application. Use this function to see how many parameters you can get or modify.

See Also

API functions xPCGetParamIdx, xPCSetParam, xPCGetParam, xPCGetParamName,
xPCGetParamDims

Property NumParameters of SimulinkRealTime.target

 xPCGetNumScopes

6-59

xPCGetNumScopes
Return number of scopes added to real-time application

Prototype
int xPCGetNumScopes(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

Return

The xPCGetNumScopes function returns the number of scopes that have been added to
the real-time application. If the function detects an error, it returns -1.

Description

The xPCGetNumScopes function returns the number of scopes that have been added to
the real-time application.

6 Simulink Real-Time API Reference for C

6-60

xPCGetNumScSignals
Returns number of signals added to specific scope

Prototype
int xPCGetNumScSignals(int port, int scopeId);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

scopeId Enter the ID number of the scope for which you want to get the number
of added signals.

Return

The xPCGetNumScSignals function returns the number of signals that have been added
to the scope, scopeID. If the function detects an error, it returns -1.

Description

The xPCGetNumScSignals function returns the number of signals that have been added
to the scope, scopeID.

 xPCGetNumSignals

6-61

xPCGetNumSignals
Return number of signals

Prototype
int xPCGetNumSignals(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

Return

The xPCGetNumSignals function returns the number of signals in the real-time
application. If the function detects an error, it returns -1.

Description

The xPCGetNumSignals function returns the total number of signals in the real-time
application that can be monitored from the development computer. Use this function to
see how many signals you can monitor.

See Also

API functions xPCGetSignalIdx, xPCGetSignal, xPCGetSignals,
xPCGetSignalName, xPCGetSignalWidth

Property NumSignals of SimulinkRealTime.target

6 Simulink Real-Time API Reference for C

6-62

xPCGetNumStates
Return number of states

Prototype
int xPCGetNumStates(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

Return

The xPCGetNumStates function returns the number of states in the real-time
application. If the function detects an error, it returns -1.

Description

The xPCGetNumStates function returns the number of states in the real-time
application.

See Also

API functions xPCGetStateLog, xPCGetNumOutputs, xPCGetOutputLog

Property StateLog of SimulinkRealTime.target

 xPCGetOutputLog

6-63

xPCGetOutputLog

Copy output log data to array

Prototype

void xPCGetOutputLog(int port, int first_sample, int num_samples,

int decimation, int output_id, double *output_data);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

first_sample Enter the index of the first sample to copy.
num_samples Enter the number of samples to copy from the output log.
decimation Select whether to copy every sample value or every Nth value.
output_id Enter an output identification number.
output_data The log is stored in output_data, whose allocation is the

responsibility of the caller.

Description

The xPCGetOutputLog function gets the output log and copies that log to an array.
You get the data for each output signal in turn by specifying output_id. Output IDs
range from 0 to (N-1), where N is the return value of xPCGetNumOutputs. Entering 1 for
decimation copies all values. Entering N copies every Nth value.

For first_sample, the sample indices range from 0 to (N-1), where N is the return value
of xPCNumLogSamples. Get the maximum number of samples by calling the function
xPCNumLogSamples.

Note that the real-time application must be stopped before you get the number.

6 Simulink Real-Time API Reference for C

6-64

See Also

API functions xPCNumLogWraps, xPCNumLogSamples, xPCMaxLogSamples,
xPCGetNumOutputs, xPCGetStateLog, xPCGetTETLog, xPCGetTimeLog

Target object method SimulinkRealTime.target.getlog

Property OutputLog of SimulinkRealTime.target

 xPCGetParam

6-65

xPCGetParam
Get parameter value and copy it to array

Prototype
void xPCGetParam(int port, int paramIndex, double *paramValue);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

paramIndex Enter the index for a parameter.
paramValue The function returns a parameter value as an array of doubles.

Description

The xPCGetParam function returns the parameter as an array in paramValue.
paramValue must be large enough to hold the parameter. You can query the size by
calling the function xPCGetParamDims. Get the parameter index by calling the function
xPCGetParamIdx. The parameter matrix is returned as a vector, with the conversion
being done in column-major format. It is also returned as a double, regardless of the data
type of the actual parameter.

For paramIndex, values range from 0 to (N-1), where N is the return value of
xPCGetNumParams.

See Also

API functions xPCSetParam, xPCGetParamDims, xPCGetParamIdx, xPCGetNumParams

SimulinkRealTime.target.getparamid

Properties ShowParameters and Parameters of SimulinkRealTime.target

6 Simulink Real-Time API Reference for C

6-66

xPCGetParamDims
Get row and column dimensions of parameter

Prototype
void xPCGetParamDims(int port, int paramIndex, int *dimension);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

paramIndex Parameter index.
dimension Dimensions (row, column) of a parameter.

Description

The xPCGetParamDims function gets the dimensions (row, column) of a parameter with
paramIndex and stores them in dimension, which must have at least two elements.

For paramIndex, values range from 0 to (N-1), where N is the return value of
xPCGetNumParams.

See Also

API functions xPCGetParamIdx, xPCGetParamName, xPCSetParam, xPCGetParam,
xPCGetNumParams

SimulinkRealTime.target.getparamid

Properties ShowParameters and Parameters of SimulinkRealTime.target

 xPCGetParamIdx

6-67

xPCGetParamIdx
Return parameter index

Prototype
int xPCGetParamIdx(int port, const char *blockName,

const char *paramName);

Arguments
port Enter the value returned by either the function

xPCOpenSerialPort or the function xPCOpenTcpIpPort.
blockName Enter the full block path generated by Simulink Coder.
paramName Enter the parameter name for a parameter associated with the

block.

Return
The xPCGetParamIdx function returns the parameter index for the parameter name. If
the function detects an error, it returns -1.

Description
The xPCGetParamIdx function returns the parameter index for the parameter name
(paramName) associated with a Simulink block (blockName). Both blockName and
paramName must be identical to those generated at real-time application building time.
The block names should be referenced from the file model_namept.m in the generated
code, where model_name is the name of the model. Note that a block can have one or
more parameters.

See Also
API functions xPCGetParamDims, xPCGetParamName, xPCGetParam

6 Simulink Real-Time API Reference for C

6-68

SimulinkRealTime.target.getparamid

Properties ShowParameters and Parameters of SimulinkRealTime.target

 xPCGetParamName

6-69

xPCGetParamName
Get name of parameter

Prototype
void xPCGetParamName(int port, int paramIdx, char *blockName, char

*paramName);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

paramIdx Enter a parameter index.
blockName String with the full block path generated by Simulink Coder.
paramName Name of a parameter for a specific block.

Description

The xPCGetParamName function gets the parameter name and block name for a
parameter with the index paramIdx. The block path and name are returned and stored
in blockName, and the parameter name is returned and stored in paramName. You must
allocate enough space for both blockName and paramName. If the paramIdx is invalid,
xPCGetLastError returns nonzero, and the strings are unchanged. Get the parameter
index from the function xPCGetParamIdx.

See Also

API functions xPCGetParam, xPCGetParamDims, xPCGetParamIdx

Properties ShowParameters and Parameters of SimulinkRealTime.target

6 Simulink Real-Time API Reference for C

6-70

xPCGetSampleTime
Return real-time application sample time

Prototype
double xPCGetSampleTime(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

Return

The xPCGetSampleTime function returns the sample time, in seconds, of the real-time
application. If the function detects an error, it returns -1.

Description

The xPCGetSampleTime function returns the sample time, in seconds, of the real-time
application. You can get the error by using the function xPCGetLastError.

See Also

API function xPCSetSampleTime

Property SampleTime of SimulinkRealTime.target

 xPCGetScope

6-71

xPCGetScope

Get and copy scope data to structure

Prototype

scopedata xPCGetScope(int port, int scNum);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return

The xPCGetScope function returns a structure of type scopedata.

Description

Note: The xPCGetScope function will be removed in a future release. Use the
xPCScGetScopePropertyName functions to access property values instead. For
example, to get the number of samples being acquired in one data acquisition cycle, use
xPCScGetNumSamples.

The xPCGetScope function gets properties of a scope with scNum and copies the
properties into a structure with type scopedata. You can use this function in
conjunction with xPCSetScope to change several properties of a scope at one time.
See scopedata for a list of properties. Use the xPCGetScope function to get the scope
number.

6 Simulink Real-Time API Reference for C

6-72

See Also

API functions xPCSetScope, scopedata

Target object method SimulinkRealTime.target.getscope

 xPCGetScopeList

6-73

xPCGetScopeList
Get and copy list of scope numbers

Prototype
void xPCGetScopeList(int port, int *data);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

data List of scope numbers in an integer array (allocated by the caller) as a
list of unsorted integers.

Description

The xPCGetScopeList function gets the list of scopes currently defined. data must
be large enough to hold the list of scopes. You can query the size by calling the function
xPCGetNumScopes.

Note: Use the xPCGetScopeList function instead of the xPCGetScopes function. The
xPCGetScopes will be removed in a future release.

6 Simulink Real-Time API Reference for C

6-74

xPCGetScopes
Get and copy list of scope numbers

Prototype
void xPCGetScopes(int port, int *data);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

data List of scope numbers in an integer array (allocated by the caller) as a
list of unsorted integers and terminated by -1.

Description

The xPCGetScopes function gets the list of scopes currently defined. You can use the
constant MAX_SCOPES (defined in xpcapiconst.h) as the size of data. This is currently
set to 30 scopes.

Note: This function will be removed in a future release. Use the xPCGetScopeList
function instead.

See Also

API functions xPCSetScope, xPCGetScope, xPCScGetSignals

Property Scopes of SimulinkRealTime.target

 xPCGetSessionTime

6-75

xPCGetSessionTime
Return length of time Simulink Real-Time kernel has been running

Prototype
double xPCGetSessionTime(int port);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return

The xPCGetSessionTime function returns the amount of time in seconds that the
Simulink Real-Time kernel has been running on the target computer. If the function
detects an error, it returns -1.

Description

The xPCGetSessionTime function returns, as a double, the amount of time in seconds
that the Simulink Real-Time kernel has been running. This value is also the time that
has elapsed since you last booted the target computer.

6 Simulink Real-Time API Reference for C

6-76

xPCGetSignal
Return value of signal

Prototype
double xPCGetSignal(int port, int sigNum);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

sigNum Enter a signal number.

Return

The xPCGetSignal function returns the current value of signal sigNum. If the function
detects an error, it returns -1.

Description

The xPCGetSignal function returns the current value of a signal. For vector
signals, use xPCGetSignals rather than call this function multiple times. Use the
xPCGetSignalIdx function to get the signal number.

See Also

API function xPCGetSignals

Property Signals of SimulinkRealTime.target

 xPCGetSignalIdx

6-77

xPCGetSignalIdx
Return index for signal

Prototype
int xPCGetSignalIdx(int port, const char *sigName);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

sigName Enter a signal name.

Return

The xPCGetSignalIdx function returns the index for the signal with name sigName. If
the function detects an error, it returns -1.

Description

The xPCGetSignalIdx function returns the index of a signal. The name must be
identical to the name generated when the application was built. You should reference the
name from the file model_namebio.m in the generated code, where model_name is the
name of the model. The creator of the application should already know the signal name.

See Also

API functions xPCGetSignalName, xPCGetSignalWidth, xPCGetSignal,
xPCGetSignals

Target object method SimulinkRealTime.target.getsignalid

6 Simulink Real-Time API Reference for C

6-78

xPCGetSigIdxfromLabel

Return array of signal indices

Prototype

int xPCGetSigIdxfromLabel(int port, const char *sigLabel, int *sigIds);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

sigLabel String with the name of a signal label.
sigIds Return array of signal indices.

Return

If xPCGetSigIdxfromLabel finds a signal, it fills an array sigIds with signal indices
and returns 0. If it finds no signal, it returns -1.

Description

The xPCGetSigIdxfromLabel function returns in sigIds the array of signal indices
for signal sigName. This function assumes that you have labeled the signal for which you
request the indices (see the Signal name parameter of the “Signal Properties Controls”).
Note that the Simulink Real-Time software refers to Simulink signal names as signal
labels. The creator of the application should already know the signal name/label. Signal
labels must be unique.

sigIds must be large enough to contain the array of indices. You can use the
xPCGetSigLabelWidth function to get the required amount of memory to be allocated
by the sigIds array.

 xPCGetSigIdxfromLabel

6-79

See Also

API functions xPCGetSignalLabel, xPCGetSigLabelWidth

6 Simulink Real-Time API Reference for C

6-80

xPCGetSignalLabel

Copy label of signal to character array

Prototype

char * xPCGetSignalLabel(int port, int sigIdx, char *sigLabel);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

sigIdx Enter signal index.
sigLabel Return signal label associated with signal index, sigIdx.

Return

The xPCGetSignalLabel function returns the label of the signal.

Description

The xPCGetSignalLabel function copies and returns the signal label, including the
block path, of a signal with sigIdx. The result is stored in sigLabel. If sigIdx is
invalid, xPCGetLastError returns a nonzero value, and sigLabel is unchanged. The
function returns sigLabel, which makes it convenient to use in a printf or similar
statement. This function assumes that you already know the signal index. Signal labels
must be unique.

This function assumes that you have labeled the signal for which you request the index
(see the Signal name parameter of the “Signal Properties Controls”). Note that the
Simulink Real-Time software refers to Simulink signal names as signal labels. The
creator of the application should already know the signal name/label.

 xPCGetSignalLabel

6-81

See Also

API functions xPCGetSigIdxfromLabel, xPCGetSigLabelWidth

6 Simulink Real-Time API Reference for C

6-82

xPCGetSigLabelWidth
Return number of elements in signal

Prototype
int xPCGetSigLabelWidth(int port, const char *sigName);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

sigName String with the name of a signal.

Return

The xPCGetSigLabelWidth function returns the number of elements that the signal
sigName contains. If the function detects an error, it returns -1.

Description

The xPCGetSigLabelWidth function returns the number of elements that the signal
sigName contains. This function assumes that you have labeled the signal for which
you request the elements (see the Signal name parameter of the “Signal Properties
Controls”). Note that the Simulink Real-Time software refers to Simulink signal names
as signal labels. The creator of the application should already know the signal name/
label. Signal labels must be unique.

See Also

API functions xPCGetSigIdxfromLabel, xPCGetSignalLabel

 xPCGetSignalName

6-83

xPCGetSignalName
Copy name of signal to character array

Prototype
char *xPCGetSignalName(int port, int sigIdx, char *sigName);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

sigIdx Enter a signal index.
sigName String with the name of a signal.

Return

The xPCGetSignalName function returns the name of the signal.

Description

The xPCGetSignalName function copies and returns the signal name, including the
block path, of a signal with sigIdx. The result is stored in sigName. If sigIdx is
invalid, xPCGetLastError returns a nonzero value, and sigName is unchanged. The
function returns sigName, which makes it convenient to use in a printf or similar
statement. This function assumes that you already know the signal index.

See Also

API functions xPCGetSignalIdx, xPCGetSignalWidth, xPCGetSignal,
xPCGetSignals

Properties ShowSignals and Signals of SimulinkRealTime.target

6 Simulink Real-Time API Reference for C

6-84

xPCGetSignals
Return vector of signal values

Prototype
int xPCGetSignals(int port, int numSignals, const int *signals,

double *values);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

numSignals Enter the number of signals to be acquired (that is, the number of
values in signals).

signals Enter the list of signal numbers to be acquired.
values Returned values are stored in the double array values.

Return

The xPCGetSignals function returns 0 if it completes execution without detecting an
error. If the function detects an error, it returns -1.

Description

The xPCGetSignals function is the vector version of the function xPCGetSignal. This
function returns the values of a vector of signals (up to 1000) as fast as it can acquire
them. The signal values may not be at the same time step (for that, define a scope of
type SCTYPE_HOST and use xPCScGetData). xPCGetSignal does the same thing for a
single signal, and could be used multiple times to achieve the same result. However, the
xPCGetSignals function is faster, and the signal values are more likely to be spaced
closely together. The signals are converted to doubles regardless of the actual data type
of the signal.

 xPCGetSignals

6-85

For signals, the list you provide should be stored in an integer array. Get the signal
numbers with the function xPCGetSignalIdx.

See Also

API function xPCGetSignal, xPCGetSignalIdx

Example

To reference signal vector data rather than scalar values, pass a vector of indices for the
signal data. For example:
/**/

/* Assume a signal of width 10, with the blockpath

* mySubsys/mySignal and the signal index s1.

*/

int i;

int sigId[10];

double sigVal[10]; /* Signal values are stored here */

/* Get the ID of the first signal */

sigId[0] = xPCGetSignalIdx(port, "mySubsys/mySignal/s1");

if (sigId[0] == -1) {

/* Handle error */

}

for (i = 1; i < 10; i++) {

 sigId[i] = sigId[0] + i;

}

xPCGetSignals(port, 10, sigId, sigVal);

/* If no error, sigVal should have the signal values */

/***/

To repeatedly get the signals, repeat the call to xPCGetSignals. If you do not change
sigID, you only need to call xPCGetSignalIdx once.

6 Simulink Real-Time API Reference for C

6-86

xPCGetSignalWidth
Return width of signal

Prototype
int xPCGetSignalWidth(int port, int sigIdx);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

sigIdx Enter the index of a signal.

Return

The xPCGetSignalWidth function returns the signal width for a signal with sigIdx. If
the function detects an error, it returns -1.

Description

The xPCGetSignalWidth function returns the number of signals for a specified signal
index. Although signals are manipulated as scalars, the width of the signal might be
useful to reassemble the components into a vector again. A signal's width is the number
of signals in the vector.

See Also

API functions xPCGetSignalIdx, xPCGetSignalName, xPCGetSignal,
xPCGetSignals

 xPCGetStateLog

6-87

xPCGetStateLog

Copy state log values to array

Prototype

void xPCGetStateLog(int port, int first_sample, int num_samples,

int decimation, int state_id, double *state_data);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

first_sample Enter the index of the first sample to copy.
num_samples Enter the number of samples to copy from the output log.
decimation Select whether to copy all the sample values or every Nth value.
state_id Enter a state identification number.
state_data The log is stored in state_data, whose allocation is the

responsibility of the caller.

Description

The xPCGetStateLog function gets the state log. It then copies the log into
state_data. You get the data for each state signal in turn by specifying the state_id.
State IDs range from 1 to (N-1), where N is the return value of xPCGetNumStates.
Entering 1 for decimation copies all values. Entering N copies every Nth value. For
first_sample, the sample indices range from 0 to (N-1), where N is the return value of
xPCNumLogSamples. Use the xPCNumLogSamples function to get the maximum number
of samples.

Note that the real-time application must be stopped before you get the number.

6 Simulink Real-Time API Reference for C

6-88

See Also

API functions xPCNumLogWraps, xPCNumLogSamples, xPCMaxLogSamples,
xPCGetNumStates, xPCGetOutputLog, xPCGetTETLog, xPCGetTimeLog

SimulinkRealTime.target.getlog

Property StateLog of SimulinkRealTime.target

 xPCGetStopTime

6-89

xPCGetStopTime
Return stop time

Prototype
double xPCGetStopTime(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

Return

The xPCGetStopTime function returns the stop time as a double, in seconds, of the real-
time application. If the function detects an error, it returns -10.0. If the stop time is
infinity (run forever), this function returns -1.0.

Description

The xPCGetStopTime function returns the stop time, in seconds, of the real-time
application. This is the amount of time the real-time application runs before stopping.
If the function detects an error, it returns -10.0. You will then need to use the function
xPCGetLastError to find the error number.

See Also

API function xPCSetStopTime

Property StopTime of SimulinkRealTime.target

6 Simulink Real-Time API Reference for C

6-90

xPCGetTargetVersion
Get Simulink Real-Time kernel version

Prototype
void xPCGetTargetVersion(int port, char *ver);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

ver The version is stored in ver.

Description

The xPCGetTargetVersion function gets a string with the version number of the
Simulink Real-Time kernel on the target computer. It then copies that version number
into ver.

See Also

xPCGetAPIVersion

 xPCGetTETLog

6-91

xPCGetTETLog
Copy TET log to array

Prototype
void xPCGetTETLog(int port, int first_sample,

int num_samples, int decimation,

double *TET_data);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

first_sample Enter the index of the first sample to copy.
num_samples Enter the number of samples to copy from the TET log.
decimation Select whether to copy all the sample values or every Nth value.
TET_data The log is stored in TET_data, whose allocation is the

responsibility of the caller.

Description

The xPCGetTETLog function gets the task execution time (TET) log. It then copies the
log into TET_data. Entering 1 for decimation copies all values. Entering N copies every
Nth value. For first_sample, the sample indices range from 0 to (N-1), where N is the
return value of xPCNumLogSamples. Use the xPCNumLogSamples function to get the
maximum number of samples.

Note that the real-time application must be stopped before you get the number.

See Also

API functions xPCNumLogWraps, xPCNumLogSamples, xPCMaxLogSamples,
xPCGetNumOutputs, xPCGetStateLog, xPCGetTimeLog

6 Simulink Real-Time API Reference for C

6-92

SimulinkRealTime.target.getlog

Property TETLog of SimulinkRealTime.target

 xPCGetTimeLog

6-93

xPCGetTimeLog
Copy time log to array

Prototype
void xPCGetTimeLog(int port, int first_sample, int num_samples,

int decimation, double *time_data);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

first_sample Enter the index of the first sample to copy.
num_samples Enter the number of samples to copy from the time log.
decimation Select whether to copy all the sample values or every Nth value.
time_data The log is stored in time_data, whose allocation is the

responsibility of the caller.

Description

The xPCGetTimeLog function gets the time log and copies the log into time_data.
This is especially relevant in the case of value-equidistant logging, where the logged
values might not be uniformly spaced in time. Entering 1 for decimation copies all
values. Entering N copies every Nth value. For first_sample, the sample indices
range from 0 to (N-1), where N is the return value of xPCNumLogSamples. Use the
xPCNumLogSamples function to get the number of samples.

Note that the real-time application must be stopped before you get the number.

See Also

API functions xPCNumLogWraps, xPCNumLogSamples, xPCMaxLogSamples,
xPCGetStateLog, xPCGetTETLog, xPCSetLogMode, xPCGetLogMode

6 Simulink Real-Time API Reference for C

6-94

SimulinkRealTime.target.getlog

Property TimeLog of SimulinkRealTime.target

 xPCInitAPI

6-95

xPCInitAPI
Initialize Simulink Real-Time DLL

Prototype
int xPCInitAPI(void);

Return

The xPCInitAPI function returns 0 if it completes execution without detecting an error.
If the function detects an error, it returns -1.

Description

The xPCInitAPI function initializes the Simulink Real-Time dynamic link library. You
must execute this function once at the beginning of the application to load the Simulink
Real-Time API DLL. This function is defined in the file xpcinitfree.c. Link this file
with your application.

See Also

API functions xPCFreeAPI, xPCNumLogWraps, xPCNumLogSamples,
xPCMaxLogSamples, xPCGetStateLog, xPCGetTETLog, xPCSetLogMode,
xPCGetLogMode

6 Simulink Real-Time API Reference for C

6-96

xPCIsAppRunning
Return real-time application running status

Prototype
int xPCIsAppRunning(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

Return

If the real-time application is stopped, the xPCIsAppRunning function returns 0. If the
real-time application is running, this function returns 1. If the function detects an error,
it returns -1.

Description

The xPCIsAppRunning function returns 1 or 0 depending on whether the real-time
application is stopped or running. If the function detects is an error, use the function
xPCGetLastError to check for the error string constant.

See Also

API function xPCIsOverloaded

Property Status of SimulinkRealTime.target

 xPCIsOverloaded

6-97

xPCIsOverloaded
Return target computer overload status

Prototype
int xPCIsOverloaded(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

Return

If the real-time application has overloaded the CPU, the xPCIsOverloaded function
returns 1. If it has not overloaded the CPU, the function returns 0. If this function
detects error, it returns -1.

Description

The xPCIsOverloaded function checks if the real-time application has overloaded the
target computer and returns 1 if it has and 0 if it has not. If the real-time application is
not running, the function returns 0.

See Also

API function xPCIsAppRunning

Property CPUoverload of SimulinkRealTime.target

6 Simulink Real-Time API Reference for C

6-98

xPCIsScFinished
Return data acquisition status for scope

Prototype
int xPCIsScFinished(int port, int scNum);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return

If a scope finishes a data acquisition cycle, the xPCIsScFinished function returns 1.
If the scope is in the process of acquiring data, this function returns 0. If the function
detects an error, it returns -1.

Description

The xPCIsScFinished function returns a Boolean value depending on whether scope
scNum is finished (state of SCST_FINISHED) or not. You can also call this function for
target scopes; however, because target scopes restart immediately, it is almost impossible
to find these scopes in the finished state. Use the xPCGetScope function to get the scope
number.

See Also

API function xPCScGetState

Scope object property Status

 xPCLoadApp

6-99

xPCLoadApp
Load real-time application onto target computer

Prototype
void xPCLoadApp(int port, const char *pathstr,

const char *filename);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

pathstr Enter the full path to the real-time application file, excluding the file
name. For example, in C, use a string like "C:\\work".

filename Enter the name of a compiled real-time application (*.dlm) without
the file extension. For example, in C use a string like "xpcosc".

Description

The xPCLoadApp function loads the compiled real-time application to the target
computer. pathstr must not contain the trailing backslash. pathstr can be set to
NULL or to the string 'nopath' if the application is in the current folder. The variable
filename must not contain the real-time application extension.

Before returning, xPCLoadApp waits for a certain amount of time before checking
whether the model initialization is complete. In the case where the model initialization
is incomplete, xPCLoadApp returns a timeout error to indicate a connection problem (for
example, ETCPREAD). By default, xPCLoadApp checks for target readiness five times,
with each attempt taking approximately 1 second (less if the target is ready). However,
for larger models or models requiring longer initialization (for example, those with
thermocouple boards), the default might not be long enough and a spurious timeout can
be generated. The functions xPCGetLoadTimeOut and xPCSetLoadTimeOut control the
number of attempts made.

6 Simulink Real-Time API Reference for C

6-100

See Also

API functions xPCStartApp, xPCStopApp, xPCUnloadApp, xPCSetLoadTimeOut,
xPCGetLoadTimeOut

Target object method SimulinkRealTime.target.load

 xPCLoadParamSet

6-101

xPCLoadParamSet
Restore parameter values

Prototype
void xPCLoadParamSet(int port, const char *filename);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

filename Enter the name of the file that contains the saved parameters.

Description

The xPCLoadParamSet function restores the real-time application parameter
values saved in the file filename. This file must be located on a local drive of the
target computer. The parameter file must have been saved from a previous call to
xPCSaveParamSet.

See Also

API function xPCSaveParamSet

6 Simulink Real-Time API Reference for C

6-102

xPCMaxLogSamples
Return maximum number of samples that can be in log buffer

Prototype
int xPCMaxLogSamples(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

Return

The xPCMaxLogSamples function returns the total number of samples. If the function
detects an error, it returns -1.

Description

The xPCMaxLogSamples function returns the total number of samples that can be
returned in the logging buffers.

See Also

API functions xPCNumLogSamples, xPCNumLogWraps, xPCGetStateLog,
xPCGetOutputLog, xPCGetTETLog, xPCGetTimeLog

Property MaxLogSamples of SimulinkRealTime.target

 xPCMaximumTET

6-103

xPCMaximumTET
Copy maximum task execution time to array

Prototype
void xPCMaximumTET(int port, double *data);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

data Array of at least two doubles.

Description

The xPCMaximumTET function gets the maximum task execution time (TET) that was
achieved during the previous real-time application run. This function also returns the
time at which the maximum TET was achieved. The xPCMaximumTET function then
copies these values into the data array. The maximum TET value is copied into the first
element, and the time at which it was achieved is copied into the second element.

See Also

API functions xPCMinimumTET, xPCAverageTET

Property MaxTET of SimulinkRealTime.target

6 Simulink Real-Time API Reference for C

6-104

xPCMinimumTET
Copy minimum task execution time to array

Prototype
void xPCMinimumTET(int port, double *data);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

data Array of at least two doubles.

Description

The xPCMinimumTET function gets the minimum task execution time (TET) that was
achieved during the previous real-time application run. This function also returns the
time at which the minimum TET was achieved. The xPCMinimumTET function then
copies these values into the data array. The minimum TET value is copied into the first
element, and the time at which it was achieved is copied into the second element.

See Also

API functions xPCMaximumTET, xPCAverageTET

Property MinTET of SimulinkRealTime.target

 xPCNumLogSamples

6-105

xPCNumLogSamples
Return number of samples in log buffer

Prototype
int xPCNumLogSamples(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

Return

The xPCNumLogSamples function returns the number of samples in the log buffer. If the
function detects an error, it returns -1.

Description

The xPCNumLogSamples function returns the number of samples in the log buffer.
In contrast to xPCMaxLogSamples, which returns the maximum number of samples
that can be logged (because of buffer size constraints), xPCNumLogSamples returns the
number of samples actually logged.

Note that the real-time application must be stopped before you get the number.

See Also

API functions xPCGetStateLog, xPCGetOutputLog, xPCGetTETLog, xPCGetTimeLog,
xPCMaxLogSamples

6 Simulink Real-Time API Reference for C

6-106

xPCNumLogWraps
Return number of times log buffer wraps

Prototype
int xPCNumLogWraps(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

Return

The xPCNumLogWraps function returns the number of times the log buffer wraps. If the
function detects an error, it returns -1.

Description

The xPCNumLogWraps function returns the number of times the log buffer wraps.

See Also

API functions xPCNumLogSamples, xPCMaxLogSamples, xPCGetStateLog,
xPCGetOutputLog, xPCGetTETLog, xPCGetTimeLog

Property NumLogWraps of SimulinkRealTime.target

 xPCOpenConnection

6-107

xPCOpenConnection
Open connection to target computer

Prototype
void xPCOpenConnection(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

Description

The xPCOpenConnection function opens a connection to the target computer
whose data is indexed by port. Before calling this function, set up the target
information by calling xPCRegisterTarget. A call to either xPCOpenSerialPort or
xPCOpenTcpIpPort can also set up the target information. If the port is already open,
calling this function has no effect.

See Also

API functions xPCOpenTcpIpPort, xPCClosePort, xPCReOpenPort, xPCTargetPing,
xPCCloseConnection, xPCRegisterTarget

6 Simulink Real-Time API Reference for C

6-108

xPCOpenSerialPort

Open RS-232 connection to Simulink Real-Time system

Prototype

int xPCOpenSerialPort(int comPort, int baudRate);

Arguments

comPort Index of the COM port to be used (0 is COM1, 1 is COM2, and so
forth).

baudRate baudRate must be one of the following values: 1200, 2400, 4800, 9600,
19200, 38400, 57600, or 115200.

Return

The xPCOpenSerialPort function returns the port value for the connection. If the
function detects an error, it returns -1.

Description

The xPCOpenSerialPort function initiates an RS-232 connection to a Simulink Real-
Time system. It returns the port value for the connection. Be sure to pass this value to all
the Simulink Real-Time API functions that require a port value.

If you enter a value of 0 for baudRate, this function sets the baud rate to the default
value (115200).

Note: RS-232 communication type will be removed in a future release. Use TCP/IP
instead.

 xPCOpenSerialPort

6-109

See Also

API functions xPCOpenTcpIpPort, xPCClosePort, xPCReOpenPort, xPCTargetPing,
xPCOpenConnection, xPCCloseConnection, xPCRegisterTarget,
xPCDeRegisterTarget

6 Simulink Real-Time API Reference for C

6-110

xPCOpenTcpIpPort
Open TCP/IP connection to Simulink Real-Time system

Prototype
int xPCOpenTcpIpPort(const char *ipAddress, const char

*ipPort);

Arguments

ipAddress Enter the IP address of the target as a dotted decimal string. For
example, "192.168.0.10".

ipPort Enter the associated IP port as a string. For example, "22222".

Return

The xPCOpenTcpIpPort function returns a nonnegative integer that you can then use
as the port value for a Simulink Real-Time API function that requires it. If this operation
fails, this function returns -1.

Description

The xPCOpenTcpIpPort function opens a connection to the TCP/IP location specified
by the IP address. It returns a nonnegative integer if it succeeds. Use this integer as the
ipPort variable in the Simulink Real-Time API functions that require a port value. The
global error number is also set, which you can get using xPCGetLastError.

See Also

API functions xPCOpenSerialPort, xPCClosePort, xPCReOpenPort, xPCTargetPing

 xPCReboot

6-111

xPCReboot
Reboot target computer

Prototype
void xPCReboot(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

Description

The xPCReboot function reboots the target computer. This function returns nothing.
This function does not close the connection to the target computer. You should either
explicitly close the port or call xPCReOpenPort once the target computer has rebooted.

See Also

API function xPCReOpenPort

Target object method SimulinkRealTime.target.reboot

6 Simulink Real-Time API Reference for C

6-112

xPCReOpenPort
Reopen communication channel

Prototype
int xPCReOpenPort(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

Return

The xPCReOpenPort function returns 0 if it reopens a connection without detecting an
error. If the function detects an error, it returns -1.

Description

The xPCReOpenPort function reopens the communications channel pointed to by port.
The difference between this function and xPCOpenSerialPort or xPCOpenTcpIpPort
is that xPCReOpenPort uses the already existing settings, while the other functions need
to set up the port.

See Also

API functions xPCOpenTcpIpPort, xPCClosePort

 xPCRegisterTarget

6-113

xPCRegisterTarget
Register target with Simulink Real-Time API library

Prototype
int xPCRegisterTarget(int commType, const char *ipAddress,

const char *ipPort, int comPort, int baudRate);

Arguments

commType Specify the communication type (TCP/IP or RS-232) between the
development and target computers.

Note: RS-232 communication type will be removed in a future release.
Use TCP/IP instead.

ipAddress Enter the IP address of the target as a dotted decimal string. For
example, "192.168.0.10".

ipPort Enter the associated IP port as a string. For example, "22222".
comPort comPort and baudRate are as in xPCOpenSerialPort.
baudRate The baudRate must be one of the following values: 1200, 2400, 4800,

9600, 19200, 38400, 57600, or 115200.

Return

The xPCRegisterTarget function returns the port number. If the function detects an
error, it returns -1.

Description

The xPCRegisterTarget function works similarly to xPCOpenSerialPort and
xPCOpenTcpIpPort, except that it does not try to open a connection to the target

6 Simulink Real-Time API Reference for C

6-114

computer. In other words, xPCOpenSerialPort or xPCOpenTcpIpPort is equivalent
to calling xPCRegisterTarget with the required parameters, followed by a call to
xPCOpenConnection.

Use the constants COMMTYP_TCPIP and COMMTYP_RS232 for commType. If commType is
set to COMMTYP_RS232, the function ignores ipAddress and ipPort. Analogously, the
function ignores comPort and baudRate if commType is set to COMMTYP_TCPIP.

If you enter a value of 0 for baudRate, this function sets the baud rate to the default
value (115200).

See Also

API functions xPCDeRegisterTarget, xPCOpenTcpIpPort, xPCOpenSerialPort,
xPCClosePort, xPCReOpenPort, xPCOpenConnection, xPCCloseConnection,
xPCTargetPing

 xPCRemScope

6-115

xPCRemScope
Remove scope

Prototype
void xPCRemScope(int port, int scNum);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Description

The xPCRemScope function removes the scope with number scNum. Attempting
to remove a nonexistent scope causes an error. For a list of existing scopes, see
xPCGetScopes. Use the xPCGetScope function to get the scope number.

See Also

API functions xPCAddScope, xPCScRemSignal, xPCGetScopes

Target object method SimulinkRealTime.target.remscope

6 Simulink Real-Time API Reference for C

6-116

xPCSaveParamSet
Save parameter values of real-time application

Prototype
void xPCSaveParamSet(int port, const char *filename);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

filename Enter the name of the file to contain the saved parameters.

Description

The xPCSaveParamSet function saves the real-time application parameter values in
the file filename. This function saves the file on a local drive of the current target
computer. You can later reload these parameters with the xPCLoadParamSet function.

You might want to save real-time application parameter values if you change these
parameter values while the application is running in Real-Time mode. Saving these
values enable you to easily recreate real-time application parameter values from a
number of application runs.

See Also

API function xPCLoadParamSet

 xPCScAddSignal

6-117

xPCScAddSignal
Add signal to scope

Prototype
void xPCScAddSignal(int port, int scNum, int sigNum);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

scNum Enter the scope number.
sigNum Enter a signal number.

Description

The xPCScAddSignal function adds the signal with number sigNum to the scope scNum.
The signal should not already exist in the scope. You can use xPCScGetSignals to get
a list of the signals already present. Use the function xPCGetScope to get the scope
number. Use the xPCGetSignalIdx function to get the signal number.

See Also

API functions xPCScRemSignal, xPCAddScope, xPCRemScope, xPCGetScopes

Scope object methods SimulinkRealTime.fileScope.addsignal,
SimulinkRealTime.hostScope.addsignal, and
SimulinkRealTime.targetScope.addsignal

6 Simulink Real-Time API Reference for C

6-118

xPCScGetAutoRestart
Scope autorestart status

Prototype
long xPCScGetAutoRestart(int port, int scNum)

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return

The xPCScGetAutoRestart function returns the autorestart flag value of scope scNum.
If the function detects an error, it returns -1.

Description

The xPCScGetAutoRestart function gets the autorestart flag value for scope scNum.
Autorestart flag can be disabled (0) or enabled (1).

See Also

API functions xPCScSetAutoRestart

 xPCScGetData

6-119

xPCScGetData
Copy scope data to array

Prototype
void xPCScGetData(int port, int scNum, int signal_id, int start,

int numsamples, int decimation, double *data);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.
signal_id Enter a signal number. Enter -1 to get time stamped data.
start Enter the first sample from which data retrieval is to start.
numsamples Enter the number of samples retrieved with a decimation of

decimation, starting from the start value.
decimation Enter a value such that every decimation sample is retrieved in

a scope window.
data The data is available in the array data, starting from sample

start.

Description

The xPCScGetData function gets the data used in a scope. Use this function for scopes
of type SCTYPE_HOST. The scope must be either in state "Finished" or in state
"Interrupted" for the data to be retrievable. (Use the xPCScGetState function to
check the state of the scope.) The data must be retrieved one signal at a time. The calling
function must allocate the space ahead of time to store the scope data. data must be
an array of doubles, regardless of the data type of the signal to be retrieved. Use the
function xPCScGetSignals to get the list of signals in the scope for signal_id. Use the
function xPCGetScope to get the scope number for scNum.

6 Simulink Real-Time API Reference for C

6-120

To get time stamped data, specify -1 for signal_id. From the output, you can then get
the number of nonzero elements.

See Also

API functions xPCGetScope, xPCScGetState, xPCScGetSignals

Property Data of SimulinkRealTime.hostScope

 xPCScGetDecimation

6-121

xPCScGetDecimation
Return decimation of scope

Prototype
int xPCScGetDecimation(int port, int scNum);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return

The xPCScGetDecimation function returns the decimation of scope scNum. If the
function detects an error, it returns -1.

Description

The xPCScGetDecimation function gets the decimation of scope scNum. The decimation
is a number, N, meaning every Nth sample is acquired in a scope window. Use the
xPCGetScope function to get the scope number.

See Also

API function xPCScSetDecimation

Property Decimation of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6 Simulink Real-Time API Reference for C

6-122

xPCScGetNumPrePostSamples
Get number of pre- or post-triggering samples before triggering scope

Prototype
int xPCScGetNumPrePostSamples(int port, int scNum);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return

The xPCScGetNumPrePostSamples function returns the number of samples for pre-
or posttriggering for scope scNum. If an error occurs, this function returns the minimum
integer value (-2147483647-1).

Description

The xPCScGetNumPrePostSamples function gets the number of samples for pre- or
posttriggering for scope scNum. A negative number implies pretriggering, whereas a
positive number implies posttriggering samples. Use the xPCGetScope function to get
the scope number.

See Also

API function xPCScSetNumPrePostSamples

Property NumPrePostSamples of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

 xPCScGetNumSamples

6-123

xPCScGetNumSamples
Get number of samples in one data acquisition cycle

Prototype
int xPCScGetNumSamples(int port, int scNum);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return

The xPCScGetNumSamples function returns the number of samples in the scope scNum.
If the function detects an error, it returns -1.

Description

The xPCScGetNumSamples function gets the number of samples in one data acquisition
cycle for scope scNum. Use the xPCGetScope function to get the scope number.

See Also

API function xPCScSetNumSamples

Property NumSamples of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6 Simulink Real-Time API Reference for C

6-124

xPCScGetNumSignals
Get number of signals in scope

Prototype
int xPCScGetNumSignals(int port, int scNum);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return

The xPCScGetNumSignals function returns the number of signals in the scope scNum. If
the function detects an error, it returns -1.

Description

The xPCScGetNumSignals function gets the number of signals in the scope scNum. Use
the xPCGetScope function to get the scope number.

See Also

API function xPCGetScope

 xPCScGetSignalList

6-125

xPCScGetSignalList
Copy list of signals to array

Prototype
void xPCScGetSignalList(int port, int scNum, int *data)

Arguments

port Value returned by either the function xPCOpenSerialPort or the
function xPCOpenTcpIpPort.

scNum Enter the scope number.
data Integer array allocated by the caller as a list containing the signal

identifiers.

Description

The xPCScGetSignals function gets the list of signals defined for scope scNum. The
array data must be large enough to hold the list of signals. To query the size, use
the xPCScGetNumSignals function. Use the xPCGetScope function to get the scope
number.

Note: Use the xPCScGetSignalList function instead of the xPCScGetSignals
function. The xPCScGetSignals will be removed in a future release.

6 Simulink Real-Time API Reference for C

6-126

xPCScGetSignals
Copy list of signals to array

Prototype
void xPCScGetSignals(int port, int scNum, int *data);

Arguments

port Value returned by either the function xPCOpenSerialPort or the
function xPCOpenTcpIpPort.

scNum Enter the scope number.
data Integer array allocated by the caller as a list containing the signal

identifiers, terminated by -1.

Description

The xPCScGetSignals function gets the list of signals defined for scope scNum. You can
use the constant MAX_SIGNALS, defined in xpcapiconst.h, as the size of data. Use the
xPCGetScope function to get the scope number.

Note: This function will be removed in a future release. Use the xPCScGetSignalList
function instead.

See Also

API functions xPCScGetData, xPCGetScopes

Scope object property Signals

 xPCScGetStartTime

6-127

xPCScGetStartTime
Get start time for last data acquisition cycle

Prototype
double xPCScGetStartTime(int port, int scNum);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return

The xPCScGetStartTime function returns the start time for the last data acquisition
cycle of a scope. If the function detects an error, it returns -1.

Description

The xPCScGetStartTime function gets the time at which the last data acquisition cycle
for scope scNum started. This is only valid for scopes of type SCTYPE_HOST. Use the
xPCGetScope function to get the scope number.

See Also

API functions xPCScGetNumSamples, xPCScGetDecimation

6 Simulink Real-Time API Reference for C

6-128

xPCScGetState

Get state of scope

Prototype

int xPCScGetState(int port, int scNum);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return

The xPCScGetState function returns the state of scope scNum. If the function detects an
error, it returns -1.

Description

The xPCScGetState function gets the state of scope scNum, or -1 upon error. Use the
xPCGetScope function to get the scope number.

Constants to find the scope state, defined in xpcapiconst.h, have the following
meanings:

Constant Value Description

SCST_WAITTOSTART 0 Scope is ready and waiting to start.
SCST_PREACQUIRING 5 Scope acquires a predefined number of samples

before triggering.

 xPCScGetState

6-129

Constant Value Description

SCST_WAITFORTRIG 1 After a scope is finished with the preacquiring
state, it waits for a trigger. If the scope does not
preacquire data, it enters the wait for trigger
state.

SCST_ACQUIRING 2 Scope is acquiring data. The scope enters this
state when it leaves the wait for trigger state.

SCST_FINISHED 3 Scope is finished acquiring data when it has
attained the predefined limit.

SCST_INTERRUPTED 4 The user has stopped (interrupted) the scope.

See Also

API functions xPCScStart, xPCScStop

Scope object property Status

6 Simulink Real-Time API Reference for C

6-130

xPCScGetTriggerLevel
Get trigger level for scope

Prototype
double xPCScGetTriggerLevel(int port, int scNum);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return

The xPCScGetTriggerLevel function returns the scope trigger level. If the function
detects an error, it returns -1.

Description

The xPCScGetTriggerLevel function gets the trigger level for scope scNum. Use the
xPCGetScope function to get the scope number.

See Also

API functions xPCScSetTriggerLevel, xPCScSetTriggerSlope,
xPCScGetTriggerSlope, xPCScSetTriggerSignal, xPCScGetTriggerSignal,
xPCScSetTriggerScope, xPCScGetTriggerScope, xPCScSetTriggerMode,
xPCScGetTriggerMode

Property TriggerLevel of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

 xPCScGetTriggerMode

6-131

xPCScGetTriggerMode
Get trigger mode for scope

Prototype
int xPCScGetTriggerMode(int port, int scNum);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return

The xPCScGetTriggerMode function returns the scope trigger mode. If the function
detects an error, it returns -1.

Description

The xPCScGetTriggerMode function gets the trigger mode for scope scNum. Use
the xPCGetScope function to get the scope number. Use the constants defined in
xpcapiconst.h to interpret the trigger mode. These constants include the following:

Constant Value Description

TRIGMD_FREERUN 0 There is no trigger mode. The scope
triggers when it is ready to trigger,
regardless of the circumstances.

TRIGMD_SOFTWARE 1 Only user intervention can trigger the
scope. No other triggering is possible.

TRIGMD_SIGNAL 2 The scope is triggered only after a signal
has crossed a value.

6 Simulink Real-Time API Reference for C

6-132

Constant Value Description

TRIGMD_SCOPE 3 The scope is triggered by another
scope at the trigger point of the
triggering scope, modified by the
value of triggerscopesample (see
scopedata).

See Also

API functions xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScSetTriggerSlope, xPCScGetTriggerSlope, xPCScSetTriggerSignal,
xPCScGetTriggerSignal, xPCScSetTriggerScope, xPCScGetTriggerScope,
xPCScSetTriggerMode

Methods SimulinkRealTime.fileScope.trigger,
SimulinkRealTime.hostScope.trigger, and
SimulinkRealTime.targetScope.trigger

Property TriggerMode of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

 xPCScGetTriggerScope

6-133

xPCScGetTriggerScope
Get trigger scope

Prototype
int xPCScGetTriggerScope(int port, int scNum);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return

The xPCScGetTriggerScope function returns a trigger scope. If the function detects an
error, it returns -1.

Description

The xPCScGetTriggerScope function gets the trigger scope for scope scNum. Use the
xPCGetScope function to get the scope number.

See Also

API functions xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScSetTriggerSlope, xPCScGetTriggerSlope, xPCScSetTriggerSignal,
xPCScGetTriggerSignal, xPCScSetTriggerMode, xPCScGetTriggerMode

Property TriggerScope of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6 Simulink Real-Time API Reference for C

6-134

xPCScGetTriggerScopeSample
Get sample number for triggering scope

Prototype
int xPCScGetTriggerScopeSample(int port, int scNum);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return

The xPCScGetTriggerScopeSample function returns a nonnegative integer for a
real sample, and -1 for the special case where triggering is at the end of the data
acquisition cycle for a triggering scope. If the function detects an error, it returns
INT_MIN (-2147483647-1).

Description

The xPCScGetTriggerScopeSample function gets the number of samples a triggering
scope (scNum) acquires before starting data acquisition on a second scope. This value
is a nonnegative integer for a real sample, and -1 for the special case where triggering
is at the end of the data acquisition cycle for a triggering scope. Use the xPCGetScope
function to get the scope number for the trigger scope.

See Also

API functions xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScSetTriggerSlope, xPCScGetTriggerSlope, xPCScSetTriggerSignal,

 xPCScGetTriggerScopeSample

6-135

xPCScGetTriggerSignal, xPCScSetTriggerScope, xPCScGetTriggerScope,
xPCScSetTriggerMode, xPCScGetTriggerMode, xPCScSetTriggerScopeSample

Property TriggerSample of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6 Simulink Real-Time API Reference for C

6-136

xPCScGetTriggerSignal
Get trigger signal for scope

Prototype
int xPCScGetTriggerSignal(int port, int scNum);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return

The xPCScGetTriggerSignal function returns the scope trigger signal. If the function
detects an error, it returns -1.

Description

The xPCScGetTriggerSignal function gets the trigger signal for scope scNum. Use the
xPCGetScope function to get the scope number for the trigger scope.

See Also

API functions xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScSetTriggerSlope, xPCScGetTriggerSlope, xPCScSetTriggerSignal,
xPCScSetTriggerScope, xPCScGetTriggerScope, xPCScSetTriggerMode,
xPCScGetTriggerMode

Methods SimulinkRealTime.fileScope.trigger,
SimulinkRealTime.hostScope.trigger, and
SimulinkRealTime.targetScope.trigger

 xPCScGetTriggerSignal

6-137

Property TriggerSignal of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6 Simulink Real-Time API Reference for C

6-138

xPCScGetTriggerSlope
Get trigger slope for scope

Prototype
int xPCScGetTriggerSlope(int port, int scNum);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return

The xPCScGetTriggerSlope function returns the scope trigger slope. If the function
detects an error, it returns -1.

Description

The xPCScGetTriggerSlope function gets the trigger slope of scope scNum. Use the
xPCGetScope function to get the scope number for the trigger scope. Use the constants
defined in xpcapiconst.h to interpret the trigger slope. These constants have the
following meanings:

Constant Value Description

TRIGSLOPE_EITHER 0 The trigger slope can be either rising or
falling.

TRIGSLOPE_RISING 1 The trigger slope must be rising when
the signal crosses the trigger value.

TRIGSLOPE_FALLING 2 The trigger slope must be falling when
the signal crosses the trigger value.

 xPCScGetTriggerSlope

6-139

See Also

API functions xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScSetTriggerSlope, xPCScSetTriggerSignal, xPCScGetTriggerSignal,
xPCScSetTriggerScope, xPCScGetTriggerScope, xPCScSetTriggerMode,
xPCScGetTriggerMode

Methods SimulinkRealTime.fileScope.trigger,
SimulinkRealTime.hostScope.trigger, and
SimulinkRealTime.targetScope.trigger

Property TriggerSlope of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6 Simulink Real-Time API Reference for C

6-140

xPCScGetType

Get type of scope

Prototype

int xPCScGetType(int port, int scNum);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return

The xPCScGetType function returns the scope type. If the function detects an error, it
returns -1.

Description

The xPCScGetType function gets the type (SCTYPE_HOST for host, SCTYPE_TARGET
for target, or SCTYPE_FILE for file) of scope scNum. Use the constants defined in
xpcapiconst.h to interpret the return value. A scope of type SCTYPE_HOST is displayed
on the development computer while a scope of type SCTYPE_TARGET is displayed on the
target computer screen. A scope of type SCTYPE_FILE is stored on a storage medium.
Use the xPCGetScope function to get the scope number.

See Also

API functions xPCAddScope, xPCRemScope

 xPCScGetType

6-141

Property Type of SimulinkRealTime.fileScope, SimulinkRealTime.hostScope,
and SimulinkRealTime.targetScope

6 Simulink Real-Time API Reference for C

6-142

xPCScRemSignal
Remove signal from scope

Prototype
void xPCScRemSignal(int port, int scNum, int sigNum);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.
sigNum Enter a signal number.

Description

The xPCScRemSignal function removes a signal from the scope with number scNum.
The scope must already exist, and signal number sigNum must exist in the scope.
Use xPCGetScopes to determine the existing scopes, and use xPCScGetSignals to
determine the existing signals for a scope. Use this function only when the scope is
stopped. Use xPCScGetState to check the state of the scope. Use the xPCGetScope
function to get the scope number.

See Also

API functions xPCScAddSignal, xPCAddScope, xPCRemScope, xPCGetScopes,
xPCScGetSignals, xPCScGetState

Scope object methods SimulinkRealTime.fileScope.remsignal,
SimulinkRealTime.hostScope.remsignal, and
SimulinkRealTime.targetScope.remsignal

 xPCScSetAutoRestart

6-143

xPCScSetAutoRestart
Scope autorestart status

Prototype
void xPCScSetAutoRestart(int port, int scNum, int autorestart)

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.
autorestart Enter value to enable (1) or disable (0) scope autorestart.

Description

The xPCScSetAutoRestart function sets the autorestart flag for scope scNum to 0 or 1.
0 disables the flag, 1 enables it. Use this function only when the scope is stopped.

See Also

API functions xPCScGetAutoRestart

6 Simulink Real-Time API Reference for C

6-144

xPCScSetDecimation
Set decimation of scope

Prototype
void xPCScSetDecimation(int port, int scNum, int decimation);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.
decimation Enter an integer for the decimation.

Description

The xPCScSetDecimation function sets the decimation of scope scNum. The decimation
is a number, N, meaning every Nth sample is acquired in a scope window. Use this
function only when the scope is stopped. Use xPCScGetState to check the state of the
scope. Use the xPCGetScope function to get the scope number.

See Also

API functions xPCScGetDecimation, xPCScGetState

Property Decimation of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

 xPCScSetNumPrePostSamples

6-145

xPCScSetNumPrePostSamples
Set number of pre- or posttriggering samples before triggering scope

Prototype
void xPCScSetNumPrePostSamples(int port, int scNum, int prepost);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.
prepost A negative number means pretriggering, while a positive number

means posttriggering. This function can only be used when the
scope is stopped.

Description

The xPCScSetNumPrePostSamples function sets the number of samples for pre- or
posttriggering for scope scNum to prepost. Use this function only when the scope is
stopped. Use xPCScGetState to check the state of the scope. Use the xPCGetScope
function to get the scope number.

See Also

API functions xPCScGetNumPrePostSamples, xPCScGetState

Property NumPrePostSamples of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6 Simulink Real-Time API Reference for C

6-146

xPCScSetNumSamples
Set number of samples in one data acquisition cycle

Prototype
void xPCScSetNumSamples(int port, int scNum, int samples);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.
samples Enter the number of samples you want to acquire in one cycle.

Description

The xPCScSetNumSamples function sets the number of samples for scope scNum to
samples. Use this function only when the scope is stopped. Use xPCScGetState to
check the state of the scope. Use the xPCGetScope function to get the scope number.

See Also

API functions xPCScGetNumSamples, xPCScGetState

Property NumSamples of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

 xPCScSetTriggerLevel

6-147

xPCScSetTriggerLevel
Set trigger level for scope

Prototype
void xPCScSetTriggerLevel(int port, int scNum, double level);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

scNum Enter the scope number.
level Value for a signal to trigger data acquisition with a scope.

Description

The xPCScSetTriggerLevel function sets the trigger level to level for scope scNum.
Use this function only when the scope is stopped. Use xPCScGetState to check the
state of the scope. Use the xPCGetScope function to get the scope number for the trigger
scope.

See Also

API functions xPCScGetTriggerLevel, xPCScSetTriggerSlope,
xPCScGetTriggerSlope, xPCScSetTriggerSignal, xPCScGetTriggerSignal,
xPCScSetTriggerScope, xPCScGetTriggerScope, xPCScSetTriggerMode,
xPCScGetTriggerMode, xPCScGetState

Property TriggerLevel of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6 Simulink Real-Time API Reference for C

6-148

xPCScSetTriggerMode
Set trigger mode of scope

Prototype
void xPCScSetTriggerMode(int port, int scNum, int mode);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.
mode Trigger mode for a scope.

Description

The xPCScSetTriggerMode function sets the trigger mode of scope scNum to mode. Use
this function only when the scope is stopped. Use xPCScGetState to check the state of
the scope. Use the xPCGetScopes function to get a list of scopes.

Use the constants defined in xpcapiconst.h to interpret the trigger mode:

Constant Value Description

TRIGMD_FREERUN 0 There is no trigger mode. The scope triggers when it
is ready to trigger, regardless of the circumstances.
This is the default.

TRIGMD_SOFTWARE 1 Only user intervention can trigger the scope. No
other triggering is possible.

TRIGMD_SIGNAL 2 The scope is triggered only after a signal has crossed
a value.

TRIGMD_SCOPE 3 The scope is triggered by another scope at the
trigger point of the triggering scope, modified by the
value of triggerscopesample (see scopedata).

 xPCScSetTriggerMode

6-149

See Also

API functions xPCGetScopes, xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScSetTriggerSlope, xPCScGetTriggerSlope, xPCScSetTriggerSignal,
xPCScGetTriggerSignal, xPCScSetTriggerScope, xPCScGetTriggerScope,
xPCScGetTriggerMode, xPCScGetState

Methods SimulinkRealTime.fileScope.trigger,
SimulinkRealTime.hostScope.trigger, and
SimulinkRealTime.targetScope.trigger

Property TriggerMode of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6 Simulink Real-Time API Reference for C

6-150

xPCScSetTriggerScope
Select scope to trigger another scope

Prototype
void xPCScSetTriggerScope(int port, int scNum, int trigScope);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

scNum Enter the scope number.
trigScope Enter the scope number of the scope used for a trigger.

Description

The xPCScSetTriggerScope function sets the trigger scope of scope scNum
to trigScope. This function can only be used when the scope is stopped. Use
xPCScGetState to check the state of the scope. Use the xPCGetScopes function to get a
list of scopes.

The scope type can be SCTYPE_HOST, SCTYPE_TARGET, or SCTYPE_FILE.

See Also

API functions xPCGetScopes, xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScSetTriggerSlope, xPCScGetTriggerSlope, xPCScSetTriggerSignal,
xPCScGetTriggerSignal, xPCScGetTriggerScope, xPCScSetTriggerMode,
xPCScGetTriggerMode, xPCScGetState

Property TriggerScope of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

 xPCScSetTriggerScopeSample

6-151

xPCScSetTriggerScopeSample
Set sample number for triggering scope

Prototype
void xPCScSetTriggerScopeSample(int port, int scNum, int

trigScSamp);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

scNum Enter the scope number.
trigScSamp Enter a nonnegative integer for the number of samples acquired by the

triggering scope before starting data acquisition on a second scope.

Description

The xPCScSetTriggerScopeSample function sets the number of samples
(trigScSamp) a triggering scope acquires before it triggers a second scope (scNum). Use
the xPCGetScopes function to get a list of scopes.

For meaningful results, set trigScSamp between -1 and (nSamp-1). nSamp is the
number of samples in one data acquisition cycle for the triggering scope. If you specify too
large a value, the scope is never triggered.

If you want to trigger a second scope at the end of a data acquisition cycle for the
triggering scope, enter a value of -1 for trigScSamp.

See Also

API functions xPCGetScopes, xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScSetTriggerSlope, xPCScGetTriggerSlope, xPCScSetTriggerSignal,

6 Simulink Real-Time API Reference for C

6-152

xPCScGetTriggerSignal, xPCScSetTriggerScope, xPCScGetTriggerScope,
xPCScSetTriggerMode, xPCScGetTriggerMode, xPCScGetTriggerScopeSample

Property TriggerSample of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

 xPCScSetTriggerSignal

6-153

xPCScSetTriggerSignal
Select signal to trigger scope

Prototype
void xPCScSetTriggerSignal(int port, int scNum, int trigSig);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.
trigSig Enter a signal number.

Description

The xPCScSetTriggerSignal function sets the trigger signal of scope scNum to
trigSig. The trigger signal trigSig must be one of the signals in the scope. Use this
function only when the scope is stopped. You can use xPCScGetSignals to get the list
of signals in the scope. Use xPCScGetState to check the state of the scope. Use the
xPCGetScopes function to get a list of scopes.

See Also

API functions xPCGetScopes, xPCScGetState, xPCScSetTriggerLevel,
xPCScGetTriggerLevel, xPCScSetTriggerSlope, xPCScGetTriggerSlope,
xPCScGetTriggerSignal, xPCScSetTriggerScope, xPCScGetTriggerScope,
xPCScSetTriggerMode, xPCScGetTriggerMode

Property TriggerSignal of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6 Simulink Real-Time API Reference for C

6-154

xPCScSetTriggerSlope

Set slope of signal that triggers scope

Prototype

void xPCScSetTriggerSlope(int port, int scNum, int trigSlope);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.
trigSlope Enter the slope mode for the signal that triggers the scope.

Description

The xPCScSetTriggerSlope function sets the trigger slope of scope scNum to
trigSlope. Use this function only when the scope is stopped. Use xPCScGetState to
check the state of the scope. Use the xPCGetScopes function to get a list of scopes.

Use the constants defined in xpcapiconst.h to set the trigger slope:

Constant Value Description

TRIGSLOPE_EITHER 0 The trigger slope can be either rising or
falling.

TRIGSLOPE_RISING 1 The trigger signal value must be rising when
it crosses the trigger value.

TRIGSLOPE_FALLING 2 The trigger signal value must be falling when
it crosses the trigger value.

 xPCScSetTriggerSlope

6-155

See Also

API functions xPCGetScopes, xPCScSetTriggerLevel, xPCScGetTriggerLevel,
xPCScGetTriggerSlope, xPCScSetTriggerSignal, xPCScGetTriggerSignal,
xPCScSetTriggerScope, xPCScGetTriggerScope, xPCScSetTriggerMode,
xPCScGetTriggerMode, xPCScGetState

Property TriggerSlope of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6 Simulink Real-Time API Reference for C

6-156

xPCScSoftwareTrigger
Set software trigger of scope

Prototype
void xPCScSoftwareTrigger(int port, int scNum);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Description

The xPCScSoftwareTrigger function triggers scope scNum. The scope must be in the
state Waiting for trigger for this function to succeed. Use xPCScGetState to check
the state of the scope. Use the xPCGetScopes function to get a list of scopes.

Regardless of the trigger mode setting, you can use xPCScSoftwareTrigger to force a
trigger. In trigger mode Software, this function is the only way to trigger the scope.

See Also

API functions xPCGetScopes, xPCScGetState, xPCIsScFinished

Methods SimulinkRealTime.fileScope.trigger,
SimulinkRealTime.hostScope.trigger, and
SimulinkRealTime.targetScope.trigger

Property TriggerMode of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

 xPCScStart

6-157

xPCScStart
Start data acquisition for scope

Prototype
void xPCScStart(int port, int scNum);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Description

The xPCScStart function starts or restarts the data acquisition of scope scNum. If
the scope does not have to preacquire samples, it enters the Waiting for Trigger
state. The scope must be in state Waiting to Start, Finished, or Interrupted
for this function to succeed. Call xPCScGetState to check the state of the scope or, for
host scopes that are already started, call xPCIsScFinished. Use the xPCGetScopes
function to get a list of scopes.

See Also

API functions xPCGetScopes, xPCScGetState, xPCScStop, xPCIsScFinished

Scope object method SimulinkRealTime.fileScope.start,
SimulinkRealTime.hostScope.start, SimulinkRealTime.targetScope.start

6 Simulink Real-Time API Reference for C

6-158

xPCScStop
Stop data acquisition for scope

Prototype
void xPCScStop(int port, int scNum);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or the
function xPCOpenTcpIpPort.

scNum Enter the scope number.

Description

The xPCScStop function stops the scope scNum. This sets the scope to the
"Interrupted" state. The scope must be running for this function to succeed. Use
xPCScGetState to determine the state of the scope. Use the xPCGetScopes function to
get a list of scopes.

See Also

API functions xPCGetScopes, xPCScStart, xPCScGetState

Scope object methods SimulinkRealTime.fileScope.stop,
SimulinkRealTime.hostScope.stop, SimulinkRealTime.targetScope.stop

 xPCSetEcho

6-159

xPCSetEcho
Turn message display on or off

Prototype
void xPCSetEcho(int port, int mode);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or the
function xPCOpenTcpIpPort.

mode Valid values are
 0 Turns the display off
 1 Turns the display on

Description

On the target computer screen, the xPCSetEcho function sets the message display
on the target computer on or off. You can change the mode only when the real-time
application is stopped. When you turn the message display off, the message screen no
longer updates. Existing messages remain on the screen as they were.

See Also

API function xPCGetEcho

6 Simulink Real-Time API Reference for C

6-160

xPCSetLastError
Set last error to specific string constant

Prototype
void xPCSetLastError(int error);

Arguments

error Specify the string constant for the error.

Description

The xPCSetLastError function sets the global error constant returned by
xPCGetLastError to error. This is useful only to set the string constant to ENOERR,
indicating no error was found.

See Also

API functions xPCGetLastError, xPCErrorMsg

 xPCSetLoadTimeOut

6-161

xPCSetLoadTimeOut

Change initialization timeout value between development and target computers

Prototype

void xPCSetLoadTimeOut(int port, int timeOut);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

timeOut Enter the new communication timeout value.

Description

The xPCSetLoadTimeOut function changes the timeout value for communication
between the development and target computers. The timeOut value is the time a
Simulink Real-Time API function waits for the communication to complete before
returning. It enables you to set the number of communication attempts to be made before
signaling a timeout.

For example, the function xPCLoadApp waits to check whether the model initialization
for a new application is complete before returning. When a new real-time application
is loaded onto the target computer, the function xPCLoadApp waits for a certain time
to check whether the model initialization is complete before returning. If the model
initialization is incomplete within the allotted time, xPCLoadApp returns a timeout
error.

By default, xPCLoadApp checks for target readiness for up to 5 seconds. However,
for larger models or models requiring longer initialization (for example, models with
thermocouple boards), the default might not be long enough and a spurious timeout can
be generated. Other functions that communicate with the target computer will wait for
timeOut seconds before declaring a timeout event.

6 Simulink Real-Time API Reference for C

6-162

See Also

API functions xPCGetLoadTimeOut, xPCLoadApp, xPCUnloadApp

 xPCSetLogMode

6-163

xPCSetLogMode
Set logging mode and increment value of scope

Prototype
void xPCSetLogMode(int port, lgmode logging_data);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

logging_data Logging mode and increment value.

Description

The xPCSetLogMode function sets the logging mode and increment to the values set in
logging_data. See the structure lgmode for more details.

See Also

API function xPCGetLogMode

API structure lgmode

Property LogMode of SimulinkRealTime.target

6 Simulink Real-Time API Reference for C

6-164

xPCSetParam
Change value of parameter

Prototype
void xPCSetParam(int port, int paramIdx, const double *paramValue);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

paramIdx Parameter index.
paramValue Vector of doubles, assumed to be the size required by the

parameter type

Description

The xPCSetParam function sets the parameter paramIdx to the value in paramValue.
For matrices, paramValue should be a vector representation of the matrix in column-
major format. Although paramValue is a vector of doubles, the function converts the
values to the expected data types (using truncation) before setting them.

See Also

API functions xPCGetParamDims, xPCGetParamIdx, xPCGetParam

 xPCSetSampleTime

6-165

xPCSetSampleTime
Change real-time application sample time

Prototype
void xPCSetSampleTime(int port, double ts);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

ts Sample time for the real-time application.

Description

The xPCSetSampleTime function sets the sample time, in seconds, of the real-time
application to ts. Use this function only when the application is stopped.

See Also

API function xPCGetSampleTime

Property SampleTime of SimulinkRealTime.target

6 Simulink Real-Time API Reference for C

6-166

xPCSetScope
Set properties of scope

Prototype
void xPCSetScope(int port, scopedata state);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

state Enter a structure of type scopedata.

Description

Note: The xPCSetScope function will be removed in a future release. Use the
xPCScSetScopePropertyName functions to access property values instead. For
example, to set the number of samples to acquire in one data acquisition cycle, use
xPCScSetNumSamples.

The xPCSetScope function sets the properties of a scope using a state structure of
type scopedata. Set the properties you want to set for the scope. You can set several
properties at the same time. For convenience, call the function xPCGetScope first to
populate the structure with the current values. You can then change the desired values.
Use this function only when the scope is stopped. Use xPCScGetState to determine the
state of the scope.

See Also

API functions xPCGetScope, xPCScGetState, scopedata

 xPCSetStopTime

6-167

xPCSetStopTime
Change real-time application stop time

Prototype
void xPCSetStopTime(int port, double tfinal);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

tfinal Enter the stop time, in seconds.

Description

The xPCSetStopTime function sets the stop time of the real-time application to the
value in tfinal. The real-time application will run for this number of seconds before
stopping. Set tfinal to -1.0 to set the stop time to infinity.

See Also

API function xPCGetStopTime

Property StopTime of SimulinkRealTime.target

6 Simulink Real-Time API Reference for C

6-168

xPCStartApp
Start real-time application

Prototype
void xPCStartApp(int port);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Description

The xPCStartApp function starts the real-time application loaded on the target
computer.

See Also

API function xPCStopApp

Target object method SimulinkRealTime.target.start

 xPCStopApp

6-169

xPCStopApp
Stop real-time application

Prototype
void xPCStopApp(int port);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Description

The xPCStopApp function stops the real-time application loaded on the target computer.
The real-time application remains loaded and the parameter changes you made remain
intact. If you want to stop and unload an application, use xPCUnloadApp.

See Also

API functions xPCStartApp, xPCUnloadApp

Target object method SimulinkRealTime.target.stop

6 Simulink Real-Time API Reference for C

6-170

xPCTargetPing

Ping target computer

Prototype

int xPCTargetPing(int port);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

Return

The xPCTargetPing function does not return an error status. This function returns 1 if
the target responds. If the target computer does not respond, the function returns 0.

Description

The xPCTargetPing function pings the target computer and returns 1 or 0 depending
on whether the target responds or not. This function returns an error string constant
only when there is an error in the input parameter (for example, the port number is
invalid or port is not open). Other errors, such as the inability to connect to the target,
are ignored.

If you are using TCP/IP, note that xPCTargetPing will cause the target computer to
close the TCP/IP connection. You can use xPCOpenConnection to reconnect. You can
also use this xPCTargetPing feature to close the target computer connection in the
event of an aborted TCP/IP connection (for example, if the program running on your
development computer has a fatal error).

 xPCTargetPing

6-171

See Also

API functions xPCOpenConnection, xPCOpenSerialPort, xPCOpenTcpIpPort,
xPCClosePort

6 Simulink Real-Time API Reference for C

6-172

xPCTgScGetGrid

Get status of grid line for particular scope

Prototype

int xPCTgScGetGrid(int port, int scNum);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return

Returns the status of the grid for a scope of type SCTYPE_TARGET. If the function detects
an error, it returns -1.

Description

The xPCTgScGetGrid function gets the state of the grid lines for scope scNum (which
must be of type SCTYPE_TARGET). A return value of 1 implies grid on, while 0 implies
grid off. Note that when the scope mode is set to SCMODE_NUMERICAL, the grid is not
drawn even when the grid mode is set to 1.

Tip

• Use xPCTgScSetMode and xPCTgScGetMode to set and retrieve the scope mode.

• Use xPCGetScopes to get a list of scopes.

 xPCTgScGetGrid

6-173

See Also

API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScSetViewMode,
xPCTgScGetViewMode, xPCTgScSetMode, xPCTgScGetMode, xPCTgScSetYLimits,
xPCTgScGetYLimits

6 Simulink Real-Time API Reference for C

6-174

xPCTgScGetMode

Get scope mode for displaying signals

Prototype

int xPCTgScGetMode(int port, int scNum);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Return

The xPCTgScGetMode function returns the value corresponding to the scope mode. The
possible values are

• SCMODE_NUMERICAL = 0

• SCMODE_REDRAW = 1

• SCMODE_SLIDING = 2

• SCMODE_ROLLING = 3

If this function detects an error, it returns -1.

Description

The xPCTgScGetMode function gets the mode (SCMODE_NUMERICAL, SCMODE_REDRAW,
SCMODE_SLIDING, SCMODE_ROLLING) of the scope scNum, which must be of type
SCTYPE_TARGET. Use the xPCGetScopes function to get a list of scopes.

 xPCTgScGetMode

6-175

See Also

API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScSetViewMode, xPCTgScGetViewMode, xPCTgScSetMode,
xPCTgScSetYLimits, xPCTgScGetYLimits

Property DisplayMode of SimulinkRealTime.fileScope,
SimulinkRealTime.hostScope, and SimulinkRealTime.targetScope

6 Simulink Real-Time API Reference for C

6-176

xPCTgScGetViewMode
Get view mode for target computer display

Prototype
int xPCTgScGetViewMode(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

Return

The xPCTgScGetViewMode function returns the view mode for the target computer
screen. If the function detects an error, it returns -1.

Description

The xPCTgScGetViewMode function gets the view (zoom) mode for the target computer
display. If the returned value is not zero, the number is that of the scope currently
displayed on the screen. If the value is 0, then all defined scopes are displayed on the
target computer screen, but no scopes are in focus (all scopes are unzoomed).

See Also

API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScSetViewMode, xPCTgScSetMode, xPCTgScGetMode, xPCTgScSetYLimits,
xPCTgScGetYLimits

Property ViewMode of SimulinkRealTime.target

 xPCTgScGetYLimits

6-177

xPCTgScGetYLimits
Copy y-axis limits for scope to array

Prototype
void xPCTgScGetYLimits(int port, int scNum, double *limits);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

scNum Enter the scope number.
limits The first element of the array is the lower limit while the second element

is the upper limit.

Description

The xPCTgScGetYLimits function gets and copies the upper and lower limits for a
scope of type SCTYPE_TARGET and with scope number scNum. The limits are stored
in the array limits. If both elements are zero, the limits are autoscaled. Use the
xPCGetScopes function to get a list of scopes.

See Also

API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScSetViewMode, xPCTgScGetViewMode, xPCTgScSetMode, xPCTgScGetMode,
xPCTgScSetYLimits

Property Ylimit of SimulinkRealTime.targetScope

6 Simulink Real-Time API Reference for C

6-178

xPCTgScSetGrid
Set grid mode for scope

Prototype
void xPCTgScSetGrid(int port, int scNum, int grid);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.
grid Enter a grid value.

Description

The xPCTgScSetGrid function sets the grid of a scope of type SCTYPE_TARGET and
scope number scNum to grid. If grid is 0, the grid is off. If grid is 1, the grid is on and
grid lines are drawn on the scope window. When the drawing mode of scope scNum is set
to SCMODE_NUMERICAL, the grid is not drawn even when the grid mode is set to 1. Use
the xPCGetScopes function to get a list of scopes.

See Also

API functions xPCGetScopes, xPCTgScGetGrid, xPCTgScSetViewMode,
xPCTgScGetViewMode, xPCTgScSetMode, xPCTgScGetMode, xPCTgScSetYLimits,
xPCTgScGetYLimits

Scope object property Grid

 xPCTgScSetMode

6-179

xPCTgScSetMode
Set display mode for scope

Prototype
void xPCTgScSetMode(int port, int scNum, int mode);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

scNum Enter the scope number.
mode Enter the value for the mode.

Description

The xPCTgScSetMode function sets the mode of a scope of type SCTYPE_TARGET and
scope number scNum to mode. You can use one of the following constants for mode:

• SCMODE_NUMERICAL = 0

• SCMODE_REDRAW = 1

• SCMODE_SLIDING = 2

• SCMODE_ROLLING = 3

Use the xPCGetScopes function to get a list of scopes.

See Also

API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScSetViewMode, xPCTgScGetViewMode, xPCTgScGetMode,
xPCTgScSetYLimits, xPCTgScGetYLimits

6 Simulink Real-Time API Reference for C

6-180

Property DisplayMode of SimulinkRealTime.targetScope

 xPCTgScSetViewMode

6-181

xPCTgScSetViewMode
Set view mode for scope

Prototype
void xPCTgScSetViewMode(int port, int scNum);

Arguments

port Enter the value returned by either the function
xPCOpenSerialPort or the function xPCOpenTcpIpPort.

scNum Enter the scope number.

Description

The xPCTgScSetViewMode function sets the target computer screen to display one scope
with scope number scNum. If you set scNum to 0, the target computer screen displays all
the defined scopes. Use the xPCGetScopes function to get a list of scopes.

See Also

API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScGetViewMode, xPCTgScSetMode, xPCTgScGetMode, xPCTgScSetYLimits,
xPCTgScGetYLimits

Property ViewMode of SimulinkRealTime.target

6 Simulink Real-Time API Reference for C

6-182

xPCTgScSetYLimits
Set y-axis limits for scope

Prototype
void xPCTgScSetYLimits(int port, int scNum, const double *Ylimits);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort or
the function xPCOpenTcpIpPort.

scNum Enter the scope number.
Ylimits Enter a two-element array.

Description

The xPCTgScSetYLimits function sets the y-axis limits for a scope with scope number
scNum and type SCTYPE_TARGET to the values in the double array Ylimits. The first
element is the lower limit, and the second element is the upper limit. Set both limits to
0.0 to specify autoscaling. Use the xPCGetScopes function to get a list of scopes.

See Also

API functions xPCGetScopes, xPCTgScSetGrid, xPCTgScGetGrid,
xPCTgScSetViewMode, xPCTgScGetViewMode, xPCTgScSetMode, xPCTgScGetMode,
xPCTgScGetYLimits

Property Ylimit of SimulinkRealTime.targetScope

 xPCUnloadApp

6-183

xPCUnloadApp
Unload real-time application

Prototype
void xPCUnloadApp(int port);

Arguments

port Enter the value returned by either the function xPCOpenSerialPort
or the function xPCOpenTcpIpPort.

Description

The xPCUnloadApp function stops the current real-time application, removes it from the
target computer memory, and resets the target computer in preparation for receiving a
new real-time application. The function xPCLoadApp calls this function before loading a
new real-time application.

See Also

API function xPCLoadApp

Target object methods SimulinkRealTime.target.load,
SimulinkRealTime.target.unload

6-184

7

Simulink Real-Time API Reference for
COM

7 Simulink Real-Time API Reference for COM

7-2

FSDir
Type definition for file system folder information structure

Syntax
typedef struct {

BSTR Name;

BSTR Date;

BSTR Time;

long Bytes;

long isdir;

} FSDir;

Fields

Name This value contains the name of the file or folder.
Date This value contains the date the file or folder was last

modified.
Time This value contains the time the file or folder was last

modified.
Bytes This value contains the size of the file in bytes. If the

element is a folder, this value is 0.
isdir This value indicates if the element is a file (0) or folder (1).

If it is a folder, Bytes has a value of 0.

Description

The FSDir structure contains information for a folder in the file system.

See Also

API methodxPCFileSystem.DirList

 FSDiskInfo

7-3

FSDiskInfo

Type definition for file system disk information structure

Syntax

typedef struct {

 BSTR Label;

 BSTR DriveLetter;

 BSTR Reserved;

 long SerialNumber;

 long FirstPhysicalSector;

 long FATType;

 long FATCount;

 long MaxDirEntries;

 long BytesPerSector;

 long SectorsPerCluster;

 long TotalClusters;

 long BadClusters;

 long FreeClusters;

 long Files;

 long FileChains;

 long FreeChains;

 long LargestFreeChain;

} FSDiskInfo;

Fields

Label This value contains the zero-terminated string that
contains the volume label. The string is empty if the
volume has no label.

DriveLetter This value contains the drive letter, in uppercase.
Reserved Reserved.
SerialNumber This value contains the volume serial number.
FirstPhysicalSector This value contains the logical block address (LBA) of the

logical drive boot record. For 3.5-inch disks, this value is 0.

7 Simulink Real-Time API Reference for COM

7-4

FATType This value contains the type of file system found. It can
contain 12 , 16 , or 32 for FAT-12, FAT-16, or FAT-32
volumes, respectively.

FATCount This value contains the number of FAT partitions on the
volume.

MaxDirEntries This value contains the size of the root folder. For FAT-32
systems, this value is 0.

BytesPerSector This value contains the sector size. This value is most
likely to be 512.

SectorsPerCluster This value contains, in sectors, the size of the smallest unit
of storage that can be allocated to a file.

TotalClusters This value contains the number of file storage clusters on
the volume.

BadClusters This value contains the number of clusters that have been
marked as bad. These clusters are unavailable for file
storage.

FreeClusters This value contains the number of clusters that are
currently available for storage.

Files This value contains the number of files, including folders,
on the volume. This number excludes the root folder and
files that have an allocated file size of 0.

FileChains This value contains the number of contiguous cluster
chains. On a completely unfragmented volume, this value
is identical to the value of Files.

FreeChains This value contains the number of contiguous cluster
chains of free clusters. On a completely unfragmented
volume, this value is 1.

LargestFreeChain This value contains the maximum allocated file size,
in number of clusters, for a newly allocated contiguous
file. On a completely unfragmented volume, this value is
identical to FreeClusters.

Description

The FSDiskInfo structure contains information for file system disks.

 FSDiskInfo

7-5

See Also

API method xPCFileSystem.GetDiskInfo

7 Simulink Real-Time API Reference for COM

7-6

xPCFileSystem.CD
Change current folder on target computer to specified path

Prototype
long CD(BSTR dir);

Member Of

XPCAPICOMLib.xPCFileSystem

Arguments

[in] dir Enter the path on the target computer to change to.

Return

If the method detects an error, it returns -1. Otherwise, the method returns 0.

Description

The xPCFileSystem.CD method changes the current folder on the target computer to
the path specified in dir. Use the xPCFileSystem.PWD method to show the current
folder of the target computer.

See Also

API method xPCFileSystem.PWD

 xPCFileSystem.CloseFile

7-7

xPCFileSystem.CloseFile
Close file on target computer

Prototype
CloseFile(long filehandle);

Member Of

XPCAPICOMLib.xPCFileSystem

Arguments

[in] filehandle Enter the file handle of an open file on the target
computer.

Return

If the method detects an error, it returns -1. Otherwise, the method returns 0.

Description

The xPCFileSystem.CloseFile method closes the file associated with fileHandle
on the target computer. fileHandle is the handle of a file previously opened by the
xPCFileSystem.OpenFile method.

See Also

API methods xPCFileSystem.OpenFile, xPCFileSystem.ReadFile,
xPCFileSystem.WriteFile

7 Simulink Real-Time API Reference for COM

7-8

xPCFileSystem.DirList
Return contents of target computer folder

Prototype
DirList(BSTR path);

Member Of

XPCAPICOMLib.xPCFileSystem

Arguments

[in] path Enter the path of the folder.

Description

The xPCFileSystem.DirList method returns the contents of the target computer
folder specified by path as an array of the FSDir structure.

See Also

API structure FSDir

API method xPCFileSystem.GetDiskInfo

 xPCFileSystem.GetDiskInfo

7-9

xPCFileSystem.GetDiskInfo
Return disk information

Prototype
GetDiskInfo(BSTR driveLetter);

Member Of

XPCAPICOMLib.xPCFileSystem

Arguments

[in] driveLetter Enter the driver letter that contains the file system.

Description

The xPCFileSystem.GetDiskInfo method accepts as input the drive specified by
driveLetter and fills in the fields of the FSDiskInfo structure.

See Also

API structure FSDiskInfo

API method xPCFileSystem.DirList

7 Simulink Real-Time API Reference for COM

7-10

xPCFileSystem.GetFileSize
Return size of file on target computer

Prototype
long GetFileSize(long filehandle);

Member Of

XPCAPICOMLib.xPCFileSystem

Arguments

[in] filehandle Enter the file handle of an open file on the target
computer.

Return

This method returns the size of the specified file in bytes.

Description

The xPCFileSystem.GetFileSize method returns the size, in bytes, of the file
associated with filehandle on the target computer. filehandle is the handle of a file
previously opened by the xPCFileSystem.OpenFile method.

See Also

API methods xPCFileSystem.OpenFile, xPCFileSystem.ReadFile

 xPCFileSystem.Init

7-11

xPCFileSystem.Init
Initialize file system object to communicate with target computer

Prototype
long Init(IxPCProtocol* xPCProtocol);

Member Of

XPCAPICOMLib.xPCFileSystem

Arguments

[in] xPCProtocol Specify the communication port of the target computer
object for which the file system is to be initialized.

Return

If the method detects an error, it returns -1. Otherwise, the xPCFileSystem.Init
method returns 0.

Description

The xPCFileSystem.Init method initializes the file system object to communicate
with the target computer referenced by the xPCProtocol object.

7 Simulink Real-Time API Reference for COM

7-12

xPCFileSystem.MKDIR
Create folder on target computer

Prototype
long MKDIR(BSTR dirname);

Member Of

XPCAPICOMLib.xPCFileSystem

Arguments

[in] dirname Enter the name of the folder to create on the target computer.

Return

If the method detects an error, it returns -1. Otherwise, the method returns 0.

Description

The xPCFileSystem.MKDIR method creates the folder dirname in the current folder of
the target computer.

See Also

API method xPCFileSystem.PWD

 xPCFileSystem.OpenFile

7-13

xPCFileSystem.OpenFile

Open file on target computer

Prototype

long OpenFile(BSTR filename, BSTR permission);

Member Of

XPCAPICOMLib.xPCFileSystem

Arguments

[in] filename Enter the name of the file to open on the target computer.
[in] permission Enter the read/write permission with which to open the file.

Values are r (read) or w (read/write).

Return

The xPCFileSystem.OpenFile method returns the file handle for the opened file.

Description

The xPCFileSystem.OpenFile method opens the specified file, filename, on the
target computer. If the file does not exist, the xPCFileSystem.OpenFile method
creates filename, then opens it. You can open a file for read or read/write access.

Note: Opening the file for write access overwrites the existing contents of the file. It does
not append the new data.

7 Simulink Real-Time API Reference for COM

7-14

See Also

API methods xPCFileSystem.CloseFile, xPCFileSystem.GetFileSize,
xPCFileSystem.ReadFile, xPCFileSystem.WriteFile

 xPCFileSystem.PWD

7-15

xPCFileSystem.PWD
Get current folder of target computer

Prototype
BSTR PWD();

Member Of

XPCAPICOMLib.xPCFileSystem

Return

This method returns the path of the current folder on the target computer.

Description

The xPCFileSystem.PWD method places the path of the current folder on the target
computer.

See Also

API method xPCFileSystem.CD

7 Simulink Real-Time API Reference for COM

7-16

xPCFileSystem.ReadFile
Read open file on target computer

Prototype
VARIANT ReadFile(int fileHandle, int start, int numbytes);

Member Of

XPCAPICOMLib.xPCFileSystem

Arguments

[in] fileHandle Enter the file handle of an open file on the target
computer.

[in] start Enter an offset from the beginning of the file from which
this method can start to read.

[in] numbytes Enter the number of bytes this method is to read from the
file.

Return

This method returns the results of the read operation as a VARIANT of type Byte. If the
method detects an error, it returns VT_ERROR, whose value is 10, instead.

Description

The xPCFileSystem.ReadFile method reads an open file on the target computer
and returns the results of the read operation as a VARIANT of type Byte. fileHandle
is the file handle of a file previously opened by xPCFileSystem.OpenFile. You can
specify that the read operation begin at the beginning of the file (default) or at a certain

 xPCFileSystem.ReadFile

7-17

offset into the file (start). The numbytes parameter specifies how many bytes the
xPCFileSystem.ReadFile method is to read from the file.

See Also

API methods xPCFileSystem.CloseFile, xPCFileSystem.GetFileSize,
xPCFileSystem.OpenFile, xPCFileSystem.WriteFile

7 Simulink Real-Time API Reference for COM

7-18

xPCFileSystem.RemoveFile
Remove file from target computer

Prototype
long RemoveFile(BSTR filename);

Member Of

XPCAPICOMLib.xPCFileSystem

Arguments

[in] filename Enter the name of a file on the target computer.

Return

If the method detects an error, it returns -1. Otherwise, the method returns 0.

Description

The xPCFileSystem.RemoveFile method removes the file named filename from the
target computer file system. filename can be a relative or absolute path name on the
target computer.

 xPCFileSystem.RMDIR

7-19

xPCFileSystem.RMDIR
Remove folder from target computer

Prototype
long RMDIR(BSTR dirname);

Member Of

XPCAPICOMLib.xPCFileSystem

Arguments

[in] dirname Enter the name of a folder on the target computer.

Return

If the method detects an error, it returns -1. Otherwise, the method returns 0.

Description

The xPCFileSystem.RMDIR method removes a folder named dirname from the target
computer file system. dirname can be a relative or absolute path name on the target
computer.

7 Simulink Real-Time API Reference for COM

7-20

xPCFileSystem.ScGetFileName
Get name of file for scope

Prototype
BSTR ScGetFileName(long scNum);

Member Of

XPCAPICOMLib.xPCFileSystem

Arguments

[in] scNum Enter the scope number.

Return

Returns the name of the file for the scope.

Description

The xPCFileSystem.ScGetFileName method returns the name of the file to which
scope scNum will save signal data.

See Also

API method xPCFileSystem.ScSetFileName

 xPCFileSystem.ScGetWriteMode

7-21

xPCFileSystem.ScGetWriteMode
Get write mode of file for scope

Prototype
long ScGetWriteMode(long scNum);

Member Of

XPCAPICOMLib.xPCFileSystem

Arguments

[in] scNum Enter the scope number.

Return

This method returns the number indicating the write mode. Values are

0 Lazy mode. The FAT entry is updated only when the file is closed and not
during each file write operation. This mode is faster, but if the system crashes
before the file is closed, the file system might not have the actual file size (the
file contents, however, will be intact).

1 Commit mode. Each file write operation simultaneously updates the FAT
entry for the file. This mode is slower, but the file system maintains the actual
file size.

Description

The xPCFileSystem.ScGetWriteMode method returns the write mode of the file for
the scope.

7 Simulink Real-Time API Reference for COM

7-22

See Also

API method xPCFileSystem.ScSetWriteMode

 xPCFileSystem.ScGetWriteSize

7-23

xPCFileSystem.ScGetWriteSize
Get block write size of data chunks

Prototype
long ScGetWriteSize(long scNum);

Member Of

XPCAPICOMLib.xPCFileSystem

Arguments

[in] scNum Enter the scope number.

Return

This method returns the block size, in bytes, of the data chunks.

Description

The xPCFileSystem.ScGetWriteSize method gets the block size, in bytes, of the data
chunks.

See Also

API method xPCFileSystem.ScSetWriteSize

7 Simulink Real-Time API Reference for COM

7-24

xPCFileSystem.ScSetFileName
Specify file name to contain signal data

Prototype
long ScSetFileName(long scNum, BSTR filename);

Member Of

XPCAPICOMLib.xPCFileSystem

Arguments

[in] scNum Enter the scope number.
[in] filename Enter the name of a file to contain the signal data.

Return

If the method detects an error, it returns -1. Otherwise, the method returns 0.

Description

The xPCFileSystem.ScSetFileName method sets the name of the file to which the
scope will save the signal data. The Simulink Real-Time software creates this file in the
target computer file system. Note that you can only call this method when the scope is
stopped.

See Also

API method xPCFileSystem.ScGetFileName

 xPCFileSystem.ScSetWriteMode

7-25

xPCFileSystem.ScSetWriteMode
Specify when file allocation table entry is updated

Prototype
long ScSetWriteMode(long scNum, long writeMode);

Member Of

XPCAPICOMLib.xPCFileSystem

Arguments

[in] scNum Enter the scope number.
[in] writeMode Enter an integer for the write mode:
 0 Enables lazy write mode
 1 Enables commit write mode

Return

If the method detects an error, it returns -1. Otherwise, the method returns 0.

Description

The xPCFileSystem.ScSetWriteMode method specifies when a file allocation table
(FAT) entry is updated. Both modes write the signal data to the file, as follows:

0 Lazy mode. The FAT entry is updated only when the file is closed and not
during each file write operation. This mode is faster, but if the system
crashes before the file is closed, the file system might not have the actual
file size (the file contents, however, will be intact).

7 Simulink Real-Time API Reference for COM

7-26

1 Commit mode. Each file write operation simultaneously updates the FAT
entry for the file. This mode is slower, but the file system maintains the
actual file size.

See Also

API method xPCFileSystem.ScSetWriteMode

Scope object property Mode

 xPCFileSystem.ScSetWriteSize

7-27

xPCFileSystem.ScSetWriteSize
Specify that memory buffer collect data in multiples of write size

Prototype
long ScSetWriteSize(long scNum, long writeSize);

Member Of

XPCAPICOMLib.xPCFileSystem

Arguments

[in] scNum Enter the scope number.
[in] writeSize Enter the block size, in bytes, of the data chunks.

Return

If the method detects an error, it returns -1. Otherwise, the method returns 0.

Description

The xPCFileSystem.ScSetWriteSize method specifies that a memory buffer collect
data in multiples of writeSize. By default, this parameter is 512 bytes, which is
the typical disk sector size. Using a block size that is the same as the disk sector size
provides better performance. writeSize must be a multiple of 512.

See Also

API method xPCFileSystem.ScGetWriteSize

7 Simulink Real-Time API Reference for COM

7-28

Scope object property WriteSize

 xPCFileSystem.WriteFile

7-29

xPCFileSystem.WriteFile
Write to file on target computer

Prototype
long WriteFile(long fileHandle, long numbytes, VARIANT buffer);

Member Of

XPCAPICOMLib.xPCFileSystem

Arguments

[in] fileHandle Enter the file handle of an open file on the target
computer.

[in] numbytes Enter the number of bytes this method is to write into
the file.

[in] buffer The contents to write to fileHandle are stored in
buffer.

Return

If the method detects an error, it returns -1. Otherwise, the method returns 0.

Description

The xPCFileSystem.WriteFile method writes the contents of the VARIANT
buffer, of type Byte, to the file specified by fileHandle on the target computer. The
fileHandle parameter is the handle of a file previously opened by xPCFSOpenFile.
numbytes is the number of bytes to write to the file.

7 Simulink Real-Time API Reference for COM

7-30

See Also

API methods xPCFileSystem.CloseFile, xPCFileSystem.GetFileSize,
xPCFileSystem.OpenFile, xPCFileSystem.ReadFile

 xPCProtocol.Close

7-31

xPCProtocol.Close
Close RS-232 or TCP/IP communication connection

Prototype
long Close();

Member Of

XPCAPICOMLib.xPCProtocol

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCProtocol.Close method closes the communication channel opened by
xPCProtocol.RS232Connect or xPCProtocol.TcpIpConnect.

Note: RS-232 communication type will be removed in a future release. Use TCP/IP
instead.

7 Simulink Real-Time API Reference for COM

7-32

xPCProtocol.GetLoadTimeOut

Return current timeout value for real-time application initialization

Prototype

long GetLoadTimeOut();

Member Of

XPCAPICOMLib.xPCProtocol

Return

If the method detects an error, it returns -1. Otherwise, it returns the number of seconds
allowed for the initialization of the real-time application.

Description

The xPCProtocol.GetLoadTimeOut method returns the number of seconds allowed for
the initialization of the real-time application.

When you load a new real-time application onto the target computer, the method
xPCTarget.LoadApp waits for a certain amount of time before checking to see
whether the initialization of the real-time application is complete. In the case
where initialization of the real-time application is not complete, the method
xPCTarget.LoadApp returns a timeout error. By default, xPCTarget.LoadApp
checks five times to see whether the real-time application is ready, with each
attempt taking about 1 second. However, for larger models or models requiring
longer initialization (for example, those with thermocouple boards), the default
might not be long enough and a spurious timeout is generated. The method
xPCProtocol.SetLoadTimeOutxPCProtocol.SetLoadTimeOut sets the timeout to a
different number.

 xPCProtocol.GetLoadTimeOut

7-33

Use the xPCProtocol.GetLoadTimeOut method if you suspect that the
current number of seconds (the timeout value) is too short. Then use the
xxPCProtocol.SetLoadTimeOut method to set the timeout to a higher number.

7 Simulink Real-Time API Reference for COM

7-34

xPCProtocol.GetxPCErrorMsg
Return error string

Prototype
BSTR GetxPCErrorMsg();

Member Of

XPCAPICOMLib.xPCProtocol

Return

If the xPCProtocol.GetxPCErrorMsg method completes without detecting an error, it
returns the string for the last reported error.

Description

The xPCProtocol.GetxPCErrorMsg method returns the string of the last error
reported by another COM API method. This value is reset every time you call a
new method. Therefore, you should check this constant value immediately after
a call to an API COM method. You can use this method in conjunction with the
xPCProtocol.isxPCError method, which detects that an error has occurred.

See Also

API function xPCProtocol.isxPCError

 xPCProtocol.Init

7-35

xPCProtocol.Init
Initialize Simulink Real-Time API DLL

Prototype
long Init();

Member Of

XPCAPICOMLib.xPCProtocol

Return

If the Simulink Real-Time DLL, xpcapi.dll loads without causing xPCProtocol.Init
to detect an error, the method returns 0. If xpcapi.dll fails to load, this method
returns -1.

Description

The xPCProtocol.Init method initializes the Simulink Real-Time API by loading the
Simulink Real-Time DLL, xpcapi.dll, into memory. To load xpcapi.dll into memory,
the method requires that the xpcapi.dll file be in one of the following folders:

• The folder in which the application is loaded
• The current folder
• The Windows system folder

7 Simulink Real-Time API Reference for COM

7-36

xPCProtocol.isxPCError
Return error status

Prototype
long isxPCError();

Member Of

XPCAPICOMLIB.xPCProtocol

Return

If an error occurred, the method returns 1. Otherwise, it returns 0.

Description

Use the xPCProtocol.isxPCError method to check for errors that might occur after a
call to the xPCProtocol class methods. If the method detects that an error occurred, call
the xPCProtocol.GetxPCErrorMsg to get the string for the error.

See Also

API function xPCProtocol.GetxPCErrorMsg

 xPCProtocol.Port

7-37

xPCProtocol.Port
Contain communication channel index

Prototype
long Port();

Member Of

XPCAPICOMLIB.xPCProtocol

Return

If the method detects an error, it returns a nonpositive number. Otherwise, it returns a
positive number (the communication channel index).

Description

The xPCProtocol.Port property contains the communication channel index if
connection with the target computer succeeds. Note that you only need to use this
property when working with a model-specific COM library that you generate from a
Simulink model.

7 Simulink Real-Time API Reference for COM

7-38

xPCProtocol.Reboot
Reboot target computer

Prototype
long Reboot();

Member Of

XPCAPICOMLib.xPCProtocol

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCProtocol.Reboot method reboots the target computer. This function does not
close the connection to the target computer. You should explicitly close the connection,
then reestablish the connection once the target computer has rebooted. Use the methods
xPCProtocol.RS232Connect or xPCProtocol.TcpIpConnect to reestablish the
connection.

 xPCProtocol.RS232Connect

7-39

xPCProtocol.RS232Connect
Open RS-232 connection to target computer

Prototype
long RS232Connect(long comport, long baudrate);

Member Of

XPCAPICOMLib.xPCProtocol

Arguments

[in] comport Index of the COM port to be used (0 is COM1, 1 is COM2, and so
forth).

[in] baudrate baudrate must be one of the following values: 1200, 2400, 4800,
9600, 19200, 38400, 57600, or 115200.

Return

The xPCProtocol.RS232Connect method returns the port value for the connection. If
the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCProtocol.RS232Connect method initiates an RS-232 connection to a Simulink
Real-Time system. It returns the port value for the connection. Be sure to pass this value
to every Simulink Real-Time API function that requires a port value.

If you enter a value of 0 for baudrate, this function sets the baud rate to the default
value (115200).

7 Simulink Real-Time API Reference for COM

7-40

Note: RS-232 communication type will be removed in a future release. Use TCP/IP
instead.

 xPCProtocol.SetLoadTimeOut

7-41

xPCProtocol.SetLoadTimeOut
Change initialization timeout value

Prototype
long SetLoadTimeOut(long timeOut);

Member Of

XPCAPICOMLib.xPCProtocol

Arguments

[in] timeOut Enter the new initialization timeout value.

Return

If the method detects an error, it returns 0. Otherwise, it returns -1. To get the string
description for the error, use xPCProtocol.GetxPCErrorMsg.

Description

The xPCProtocol.SetLoadTimeOut method changes the timeout value for
initialization. The timeOut value is the time the method xPCTarget.LoadApp waits to
check whether the model initialization for a new application is complete before returning.
It enables you to set the number of initialization attempts to be made before signaling
a timeout. When a new real-time application is loaded onto the target computer, the
method xPCTarget.LoadApp waits for a certain time to check whether the model
initialization is complete before returning. If the model initialization is incomplete within
the allotted time, xPCTarget.LoadApp returns a timeout error.

By default, xPCTarget.LoadApp checks for target readiness five times, with each
attempt taking approximately 1 second (less if the target is ready). However, for larger

7 Simulink Real-Time API Reference for COM

7-42

models or models requiring longer initialization (for example, those with thermocouple
boards), the default might not be long enough and a spurious timeout can be generated.

 xPCProtocol.TargetPing

7-43

xPCProtocol.TargetPing
Ping target computer

Prototype
long TargetPing;

Member Of

XPCAPICOMLIB.xPCProtocol

Return

The xPCProtocol.TargetPing method does not return an error status. This method
returns 1 if it reaches the target computer and the computer responds. If the target
computer does not respond, the method returns 0.

Description

The xPCProtocol.TargetPing method pings the target computer and returns 1 or 0
depending on whether the target responds or not. Errors such as the inability to connect
to the target are ignored.

If you are using TCP/IP, note that xPCProtocol.TargetPing will cause the target
computer to close the TCP/IP connection. You can use xPCProtocol.TcpIpConnect to
reconnect. You can also use this xPCProtocol.TargetPing feature to close the target
computer connection in the event of an aborted TCP/IP connection (for example, if your
development-computer-side program crashes).

7 Simulink Real-Time API Reference for COM

7-44

xPCProtocol.TcpIpConnect
Open TCP/IP connection to target computer

Prototype
long TcpIpConnect(BSTR TargetIpAddress, BSTR TargetPort);

Member Of

XPCAPICOMLIB.xPCProtocol

Arguments

[in] TargetIpAddress Enter the IP address of the target as a dotted
decimal string. For example, "192.168.0.10".

[in] TargetPort Enter the associated IP port as a string. For
example, "22222".

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCProtocol.TcpIpConnect method opens a connection to the TCP/IP location
specified by the IP address. Use this integer as the TargetPort variable in the Simulink
Real-Time COM API functions that require a port value.

 xPCProtocol.Term

7-45

xPCProtocol.Term
Unload Simulink Real-Time API DLL from memory

Prototype
long Term();

Member Of

XPCAPICOMLib.xPCProtocol

Return

The xPCProtocol.Term method always returns -1.

Description

The xPCProtocol.Term method unloads the Simulink Real-Time API DLL
(xpcapi.dll) from memory. You must call this method when you want to terminate
your COM API application.

7 Simulink Real-Time API Reference for COM

7-46

xPCScopes.AddFileScope
Create new file scope

Prototype
long AddFileScope(long scNum);

Member Of

XPCAPICOMLib.xPCScopes

Arguments

[in] scNum Enter a number for a new scope. Values are 1, 2, 3. . .

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCScopes.AddFileScope method creates a new file scope on the target computer.

Calling the xPCScopes.AddFileScope method with scNum having the number of
an existing scope produces an error. Use xPCScopes.GetScopes to find the numbers of
existing scopes.

 xPCScopes.AddHostScope

7-47

xPCScopes.AddHostScope
Create new host scope

Prototype
long AddHostScope(long scNum);

Member Of

XPCAPICOMLib.xPCScopes

Arguments

[in] scNum Enter a number for a new scope. Values are 1, 2, 3. . .

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCScopes.AddHostScope method creates a new host scope on the target
computer.

Calling the xPCScopes.AddHostScope method with scNum having the number of
an existing scope produces an error. Use xPCScopes.GetScopes to find the numbers of
existing scopes.

7 Simulink Real-Time API Reference for COM

7-48

xPCScopes.AddTargetScope
Create new target scope

Prototype
long AddTargetScope(long scNum);

Member Of

XPCAPICOMLib.xPCScopes

Arguments

[in] scNum Enter a number for a new scope. Values are 1, 2, 3. . .

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

If the method detects an error, it returns 0. The xPCScopes.AddTargetScope method
creates a new scope on the target computer.

Calling the xPCScopes.AddTargetScope method with scNum having the number of
an existing scope produces an error. Use xPCScopes.GetScopes to find the numbers of
existing scopes.

 xPCScopes.GetScopes

7-49

xPCScopes.GetScopes
Get and copy list of scope numbers

Prototype
VARIANT GetScopes(long size);

Member Of

XPCAPICOMLib.xPCScopes

Arguments

[in] size Specify the size of the VARIANT array returned. This argument
must be greater than MAX_SCOPES-1. The elements in the array
consist of a list of unsorted integers, terminated by -1.

Return

The xPCScopes.GetScopes method returns a VARIANT array with elements containing
a list of scope numbers from the real-time application.

Description

The xPCScopes.GetScopes method gets a VARIANT array with elements containing a
list of scope numbers currently defined for the real-time application. Specify the size of
the VARIANT array returned. This size must be greater than the maximum number of
scopes -1, up to a maximum of 30 scopes. The elements in the array consist of a list of
unsorted integers, terminated by -1.

7 Simulink Real-Time API Reference for COM

7-50

xPCScopes.GetxPCError
Get error string

Prototype
BSTR GetxPCError();

Member Of

XPCAPICOMLib.xPCScopes

Return

The xPCScopes.GetxPCError method returns the string for the last reported error. If
the software has not reported an error, this method returns 0.

Description

The xPCScopes.GetxPCError method gets the string of the last reported error by
another COM API method. This value is reset every time you call a new method.
Therefore, you should check this constant value immediately after a call to an API COM
method. You can use this method in conjunction with the xPCScopes.isxPCError
method, which detects that an error has occurred.

See Also

API function xPCScopes.isxPCError

 xPCScopes.Init

7-51

xPCScopes.Init
Initialize scope object to communicate with target computer

Prototype
long Init(IxPCProtocol* xPCProtocol);

Member Of

XPCAPICOMLib.xPCScopes

Arguments

[in] xPCProtocol Specify the communication port of the target computer object
for which the scope is to be initialized.

Return

If the xPCScopes.Init method initializes the scope object without detecting an error, it
returns 0. If the scope object fails to initialize, the method returns -1.

Description

The xPCScopes.Init method initializes the scope object to communicate with the target
computer referenced by the xPCProtocol object.

7 Simulink Real-Time API Reference for COM

7-52

xPCScopes.IsScopeFinished
Get data acquisition status for scope

Prototype
long IsScopeFinished(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

If the method detects an error, it returns -1. If a scope finishes a data acquisition cycle,
this method returns 1. If the scope is in the process of acquiring data, this method
returns 0.

Description

The xPCScopeos.IsScopeFinished method gets a 1 or 0 depending on whether scope
scNum is finished (state of SCST_FINISHED) or not. You can also call this function for
target scopes; however, because target scopes restart immediately, it is almost impossible
to find these scopes in the finished state.

 xPCScopes.isxPCError

7-53

xPCScopes.isxPCError
Get error status

Prototype
long isxPCError();

Member Of

XPCAPICOMLIB.xPCScopes

Return

If an error occurred, the method returns 1. Otherwise, it returns 0.

Description

Use the xPCScopes.isxPCError method to check for errors that might occur after a
call to the xPCScopes class methods. If the software detects that an error occurred, call
the xPCScopes.GetxPCError method to get the string for the error.

See Also

API function xPCScopes.GetxPCError

7 Simulink Real-Time API Reference for COM

7-54

xPCScopes.RemScope
Remove scope

Prototype
long RemScope(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCScopes.RemScope method removes the scope with number scNum. Attempting
to remove a nonexistent scope causes an error. For a list of existing scopes, use
xPCScopes.GetScopes.

 xPCScopes.ScopeAddSignal

7-55

xPCScopes.ScopeAddSignal
Add signal to scope

Prototype
long ScopeAddSignal(long scNum, long sigNum);

Member Of

XPCAPICOMLib.xPCScopes

Arguments

[in] scNum Enter the scope number.
[in] sigNum Enter a signal number.

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCScopes.ScopeAddSignal method adds the signal with number sigNum
to the scope scNum. The signal should not already exist in the scope. You can use
xPCScopes.ScopeGetSignals to get a list of the signals already present. Use the
xPCTarget.GetSignalIdx method to get the signal number.

7 Simulink Real-Time API Reference for COM

7-56

xPCScopes.ScopeGetAutoRestart
Scope autorestart value

Prototype
long ScopeGetAutoRestart(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

The xPCScopes.ScopeGetAutoRestart method returns the scope autorestart flag
value (1 if enabled, 0 if disabled). If the method detects an error, it returns -1.

Description

The xPCScopes.ScopeGetAutoRestart method gets the autorestart flag value for
scope scNum. Autorestart flag can be disabled (0) or enabled (1).

 xPCScopes.ScopeGetData

7-57

xPCScopes.ScopeGetData

Copy scope data to array

Prototype

VARIANT ScopeGetData(long scNum, long signal_id, long start,

long numsamples, long decimation);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.
[in] signal_id Enter a signal number. Enter -1 to get time stamped

data.
[in] start Enter the first sample from which data retrieval is to

start.
[in] numsamples Enter the number of samples retrieved with a

decimation of decimation, starting from the start
value.

[in] decimation Enter a value such that every decimation sample is
retrieved in a scope window.

Return

The xPCScopes.ScopeGetData method returns a VARIANT array with elements
containing the data used in a scope.

7 Simulink Real-Time API Reference for COM

7-58

Description

The xPCScopes.ScopeGetData method gets the data used in a scope. Use this function
for scopes of type SCTYPE_HOST. The scope must be either in state Finished or in state
Interrupted for the data to be retrievable. (Use the xPCScopes.ScopeGetState method
to check the state of the scope.) The data must be retrieved one signal at a time. The
calling function determines and allocates the space ahead of time to store the scope data.
Use the method xPCScopes.ScopeGetSignals to get the list of signals in the scope for
signal_id.

To get time stamped data, specify -1 for signal_id. From the output, you can then get
the number of nonzero elements.

 xPCScopes.ScopeGetDecimation

7-59

xPCScopes.ScopeGetDecimation
Get decimation of scope

Prototype
long ScopeGetDecimation(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

The xPCScopes.ScopeGetDecimation method returns the decimation of scope scNum.
If the method detects an error, it returns -1.

Description

The xPCScopes.ScopeGetDecimation method gets the decimation of scope scNum.
The decimation is a number, N, meaning every Nth sample is acquired in a scope window.

7 Simulink Real-Time API Reference for COM

7-60

xPCScopes.ScopeGetNumPrePostSamples
Get number of pre- or posttriggering samples before triggering scope

Prototype
long ScopeGetNumPrePostSamples(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

The xPCScopes.ScopeGetNumPrePostSamples method returns the number of
samples for pre- or posttriggering for scope scNum. If an error occurs, this method
returns -1.

Description

The xPCScopes.ScopeGetNumPrePostSamples method gets the number of samples for
pre- or posttriggering for scope scNum. A negative number implies pretriggering, whereas
a positive number implies posttriggering samples.

 xPCScopes.ScopeGetNumSamples

7-61

xPCScopes.ScopeGetNumSamples
Get number of samples in one data acquisition cycle

Prototype
long ScopeGetNumSamples(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

The xPCScopes.ScopeGetNumSamples method returns the number of samples in the
scope scNum. If the method detects an error, it returns -1.

Description

The xPCScopes.ScopeGetNumSamples method gets the number of samples in one data
acquisition cycle for scope scNum.

7 Simulink Real-Time API Reference for COM

7-62

xPCScopes.ScopeGetSignals
Get list of signals

Prototype
VARIANT ScopeGetSignals(long scNum, long size);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.
[in] size Enter an integer to allocate the number of elements to be

returned in the VARIANT array. This size is required for the
method to copy the list of signals into the VARIANT array. The
maximum number of signals is 10.

Return

The xPCScopes.ScopeGetSignals method returns a VARIANT array with elements
consisting of the list of signals defined for a scope.

Description

The xPCScopes.ScopeGetSignals method gets the list of signals defined for scope
scNum. You can use the constant MAX_SIGNALS.

 xPCScopes.ScopeGetStartTime

7-63

xPCScopes.ScopeGetStartTime
Get last data acquisition cycle start time

Prototype
double ScopeGetStartTime(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

The xPCScopes.ScopeGetStartTime method returns the start time for the last data
acquisition cycle of a scope. If the method detects an error, it returns -1.

Description

The xPCScopes.ScopeGetStartTime method gets the time at which the last
data acquisition cycle for scope scNum started. This is only valid for scopes of type
SCTYPE_HOST.

7 Simulink Real-Time API Reference for COM

7-64

xPCScopes.ScopeGetState
Get state of scope

Prototype
BSTR ScopeGetState(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

The xPCScopes.ScopeGetState method returns the state of scope scNum. If the
method detects an error, it returns -1.

Description

The xPCScopes.ScopeGetState method gets the state of scope scNum, or -1 upon
error.

Constants to find the scope state have the following meanings:

Constant Value Description

SCST_WAITTOSTART 0 Scope is ready and waiting to start.
SCST_PREACQUIRING 5 Scope acquires a predefined number of

samples before triggering.

 xPCScopes.ScopeGetState

7-65

Constant Value Description

SCST_WAITFORTRIG 1 After a scope is finished with the
preacquiring state, it waits for a
trigger. If the scope does not preacquire
data, it enters the wait for trigger state.

SCST_ACQUIRING 2 Scope is acquiring data. The scope
enters this state when it leaves the wait
for trigger state.

SCST_FINISHED 3 Scope is finished acquiring data when it
has attained the predefined limit.

SCST_INTERRUPTED 4 The user has stopped (interrupted) the
scope.

7 Simulink Real-Time API Reference for COM

7-66

xPCScopes.ScopeGetTriggerLevel
Get trigger level for scope

Prototype
double ScopeGetTriggerLevel(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

The xPCScopes.ScopeGetTriggerLevel method returns the scope trigger level. If the
method detects an error, it returns -1.

Description

The xPCScopes.ScopeGetTriggerLevel method gets the trigger level for scope
scNum.

 xPCScopes.ScopeGetTriggerMode

7-67

xPCScopes.ScopeGetTriggerMode
Get trigger mode for scope

Prototype
long ScopeGetTriggerMode(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

The xPCScopes.ScopeGetTriggerMode method returns the scope trigger mode. If the
method detects an error, it returns -1.

Description

The xPCScopes.ScopeGetTriggerMode method gets the trigger mode for scope scNum.
Use the constants here to interpret the trigger mode:

Constant Value Description

TRIGMD_FREERUN 0 There is no trigger mode. The scope
triggers when it is ready to trigger,
regardless of the circumstances.

TRIGMD_SOFTWARE 1 Only user intervention can trigger the
scope. No other triggering is possible.

7 Simulink Real-Time API Reference for COM

7-68

Constant Value Description

TRIGMD_SIGNAL 2 The scope is triggered only after a
signal has crossed a value.

TRIGMD_SCOPE 3 The scope is triggered by another
scope at the trigger point of the
triggering scope, modified by the
value of triggerscopesample (see
scopedata).

See Also

API function xPCScopes.ScopeGetTriggerModeStr

 xPCScopes.ScopeGetTriggerModeStr

7-69

xPCScopes.ScopeGetTriggerModeStr
Get trigger mode as string

Prototype
BSTR ScopeGetTriggerModeStr(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

The xPCScopes.ScopeGetTriggerModeStr method returns a string containing the
trigger mode string.

Description

The xPCScopes.ScopeGetTriggerModeStr method gets the trigger mode string for
scope scNum. This method returns one of the following strings.

Constant Description

FreeRun There is no trigger mode. The scope triggers when it is ready to
trigger, regardless of the circumstances.

Software Only user intervention can trigger the scope. No other triggering
is possible.

Signal The scope is triggered only after a signal has crossed a value.

7 Simulink Real-Time API Reference for COM

7-70

Constant Description

Scope The scope is triggered by another scope at the trigger point of the
triggering scope, modified by the value of triggerscopesample
(see scopedata).

See Also

API function xPCScopes.ScopeGetTriggerMode

 xPCScopes.ScopeGetTriggerSample

7-71

xPCScopes.ScopeGetTriggerSample
Get sample number for triggering scope

Prototype
long ScopeGetTriggerSample(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

The xPCScopes.ScopeGetTriggerSample method returns a nonnegative integer
for a real sample, and -1 for the special case where triggering is at the end of the data
acquisition cycle for a triggering scope. If the method detects an error, it returns -1.

Description

The xPCScopes.ScopeGetTriggerSample method gets the number of samples a
triggering scope (scNum) acquires before starting data acquisition on a second scope.
This value is a nonnegative integer for a real sample, and -1 for the special case where
triggering is at the end of the data acquisition cycle for a triggering scope.

7 Simulink Real-Time API Reference for COM

7-72

xPCScopes.ScopeGetTriggerSignal
Get trigger signal for scope

Prototype
long ScopeGetTriggerSignal(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

The xPCScopes.ScopeGetTriggerSignal method returns the scope trigger signal. If
the method detects an error, it returns -1.

Description

The xPCScopes.ScopeGetTriggerSignal method gets the trigger signal for scope
scNum.

 xPCScopes.ScopeGetTriggerSlope

7-73

xPCScopes.ScopeGetTriggerSlope
Get trigger slope for scope

Prototype
long ScopeGetTriggerSlope(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

The xPCScopes.ScopeGetTriggerSlope method returns the scope trigger slope. If the
method detects an error, it returns -1.

Description

The xPCScopes.ScopeGetTriggerSlope method gets the trigger slope of scope scNum.
Use the constants here to interpret the trigger slope:

String Value Description

TRIGSLOPE_EITHER 0 The trigger slope can be either rising or
falling.

TRIGSLOPE_RISING 1 The trigger slope must be rising when
the signal crosses the trigger value.

7 Simulink Real-Time API Reference for COM

7-74

String Value Description

TRIGSLOPE_FALLING 2 The trigger slope must be falling when
the signal crosses the trigger value.

See Also

API function xPCScopes.ScopeGetTriggerSlopeStr

 xPCScopes.ScopeGetTriggerSlopeStr

7-75

xPCScopes.ScopeGetTriggerSlopeStr
Get trigger slope as string

Prototype
BSTR ScopeGetTriggerSlopeStr(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

The xPCScopes.ScopeGetTriggerSlopeStr method returns a string containing the
trigger slope string.

Description

The xPCScopes.ScopeGetTriggerSlopeStr method gets the trigger slope string for
scope scNum. This method returns one of the following strings:

String Description

Either The trigger slope can be either rising or falling.
Rising The trigger slope must be rising when the signal crosses the

trigger value.
Falling The trigger slope must be falling when the signal crosses the

trigger value.

7 Simulink Real-Time API Reference for COM

7-76

See Also

API function xPCScopes.ScopeGetTriggerSlope

 xPCScopes.ScopeGetType

7-77

xPCScopes.ScopeGetType
Get type of scope

Prototype
BSTR ScopeGetType(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

The xPCScopes.ScopeGetType method returns the scope type as a string. If the
method detects an error, it returns -1.

Description

The xPCScopes.ScopeGetType method gets the type of scope scNum. This method
returns one of the following strings:

String Description

HOST Host scope
Target Target scope

7 Simulink Real-Time API Reference for COM

7-78

xPCScopes.ScopeRemSignal
Remove signal from scope

Prototype
long ScopeRemSignal(long scNum, long sigNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.
[in] sigNum Enter a signal number.

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCScopes.ScopeRemSignal method removes a signal from the scope with
number scNum. The scope must already exist, and signal number sigNum must exist
in the scope. Use xPCScopes.GetScopes to determine the existing scopes, and use
xPCScopes.ScopeGetSignals to determine the existing signals for a scope. Use this
function only when the scope is stopped. Use xPCScopes.ScopeGetState to check the state
of the scope.

 xPCScopes.ScopeSetAutoRestart

7-79

xPCScopes.ScopeSetAutoRestart
Scope autorestart value

Prototype
long ScopeSetAutoRestart(long scNum, long onoff);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.
[in] onoff Enter value to enable (1) or disable (0) scope

autorestart.

Return

The xPCScopes.ScopeSetAutoRestart method returns the scope autorestart flag
value (1 if enabled, 0 if disabled). If the method detects an error, it returns -1.

Description

The xPCScopes.ScopeSetAutoRestart method sets the autorestart flag value for
scope scNum. Autorestart flag can be disabled (0) or enabled (1).

7 Simulink Real-Time API Reference for COM

7-80

xPCScopes.ScopeSetDecimation
Set decimation of scope

Prototype
long ScopeSetDecimation(long scNum, long decimation);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.
[in] decimation Enter an integer for the decimation.

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCScopes.ScopeSetDecimation method sets the decimation of scope scNum. The
decimation is a number, N, meaning every Nth sample is acquired in a scope window. Use
this function only when the scope is stopped. Use xPCScopes.ScopeGetState to check the
state of the scope.

 xPCScopes.ScopeSetNumPrePostSamples

7-81

xPCScopes.ScopeSetNumPrePostSamples
Set number of pre- or posttriggering samples before triggering scope

Prototype
long ScopeSetNumPrePostSamples(long scNum, long prepost);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.
[in] prepost A negative number means pretriggering, while a positive

number means posttriggering. This function can only be used
when the scope is stopped.

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCScopes.ScopeSetNumPrePostSamples method sets the number of samples
for pre- or posttriggering for scope scNum to prepost. Use this method only when the
scope is stopped. Use xPCScopes.ScopeGetState to check the state of the scope. Use the
xPCScopes.GetScopes method to get a list of scope numbers.

7 Simulink Real-Time API Reference for COM

7-82

xPCScopes.ScopeSetNumSamples
Set number of samples in one data acquisition cycle

Prototype
long ScopeSetNumSamples(long scNum, long samples);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.
[in] samples Enter the number of samples you want to acquire in one cycle.

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCScopes.ScopeSetNumSamples method sets the number of samples for
scope scNum to samples. Use this function only when the scope is stopped. Use
xPCScopes.ScopeGetState to check the state of the scope.

 xPCScopes.ScopeSetTriggerLevel

7-83

xPCScopes.ScopeSetTriggerLevel
Set trigger level for scope

Prototype
long ScopeSetTriggerLevel(long scNum, double level);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.
[in] level Value for a signal to trigger data acquisition with a scope.

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCScopes.ScopeSetTriggerLevel method sets the trigger level to
level for scope scNum. Use this function only when the scope is stopped. Use
xPCScopes.ScopeGetStateto check the state of the scope.

7 Simulink Real-Time API Reference for COM

7-84

xPCScopes.ScopeSetTriggerMode
Set trigger mode of scope

Prototype
long ScopeSetTriggerMode(long scNum, long triggermode);

Member Of
XPCAPICOMLIB.xPCScopes

Arguments
[in] scNum Enter the scope number.
[in] triggermode Trigger mode for a scope.

Return
If the method detects an error, it returns 0. Otherwise, it returns -1.

Description
The xPCScopes.ScopeSetTriggerMode method sets the trigger mode of scope
scNum to triggermode. Use this method only when the scope is stopped. Use
xPCScopes.ScopeGetStateto check the state of the scope. Use the xPCScopes.GetScopes
method to get a list of scopes.

Use the constants defined here to interpret the trigger mode:

Constant Value Description

TRIGMD_FREERUN 0 There is no trigger mode. The scope
triggers when it is ready to trigger,
regardless of the circumstances. This is
the default.

 xPCScopes.ScopeSetTriggerMode

7-85

Constant Value Description

TRIGMD_SOFTWARE 1 Only user intervention can trigger the
scope. No other triggering is possible.

TRIGMD_SIGNAL 2 The scope is triggered only after a
signal has crossed a value.

TRIGMD_SCOPE 3 The scope is triggered by another
scope at the trigger point of the
triggering scope, modified by the
value of triggerscopesample (see
scopedata).

7 Simulink Real-Time API Reference for COM

7-86

xPCScopes.ScopeSetTriggerSample
Set sample number for triggering scope

Prototype
long ScopeSetTriggerSample(long scNum, long trigScSample);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.
[in] trigScSample Enter a nonnegative integer for the number of

samples acquired by the triggering scope before
starting data acquisition on a second scope.

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCScopes.ScopeSetTriggerSample method sets the number of samples
(trigScSample) a triggering scope acquires before it triggers a second scope (scNum).
Use the xPCScopes.GetScopes method to get a list of scopes.

For meaningful results, set trigScSample between -1 and (nSamp-1). nSamp is the
number of samples in one data acquisition cycle for the triggering scope. If you specify too
large a value, the scope is never triggered.

 xPCScopes.ScopeSetTriggerSample

7-87

If you want to trigger a second scope at the end of a data acquisition cycle for the
triggering scope, use a value of -1 for trigScSamp.

7 Simulink Real-Time API Reference for COM

7-88

xPCScopes.ScopeSetTriggerSignal
Select signal to trigger scope

Prototype
long ScopeSetTriggerSignal(long scNum, long triggerSignal);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.
[in] trigSignal Enter a signal number.

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCScopes.ScopeSetTriggerSignal method sets the trigger signal
of scope scNum to trigSig. The trigger signal trigSig must be one of the
signals in the scope. Use this method only when the scope is stopped. You
can use xPCScopes.ScopeGetSignals to get the list of signals in the
scope. UsexPCScopes.ScopeGetState to check the state of the scope. Use the
xPCScopes.GetScopes method to get a list of scopes.

 xPCScopes.ScopeSetTriggerSlope

7-89

xPCScopes.ScopeSetTriggerSlope
Set slope of signal that triggers scope

Prototype
long ScopeSetTriggerSlope(long scNum, long triggerslope);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.
[in] triggerSlope Enter the slope mode for the signal that triggers the scope.

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCScopes.ScopeSetTriggerSlope method sets the trigger slope of
scope scNum to trigSlope. Use this method only when the scope is stopped. Use
xPCScopes.ScopeGetState to check the state of the scope. Use the xPCScopes.GetScopes
method to get a list of scopes.

Use the constants defined here to set the trigger slope:

Constant Value Description

TRIGSLOPE_EITHER 0 The trigger slope can be either rising or
falling.

7 Simulink Real-Time API Reference for COM

7-90

Constant Value Description

TRIGSLOPE_RISING 1 The trigger signal value must be rising
when it crosses the trigger value.

TRIGSLOPE_FALLING 2 The trigger signal value must be falling
when it crosses the trigger value.

 xPCScopes.ScopeSoftwareTrigger

7-91

xPCScopes.ScopeSoftwareTrigger
Set software trigger of scope

Prototype
long ScopeSoftwareTrigger(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCScopes.ScopeSoftwareTrigger method triggers scope scNum. The
scope must be in the state Waiting for trigger for this method to succeed. Use
xPCScopes.ScopeGetState to check the state of the scope. Use the xPCScopes.GetScopes
method to get a list of scopes.

You can use the xPCScopes.ScopeSoftwareTrigger method to trigger the scope,
regardless of the trigger mode.

7 Simulink Real-Time API Reference for COM

7-92

xPCScopes.ScopeStart
Start data acquisition for scope

Prototype
long ScopeStart(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCScopes.ScopeStart method starts or restarts the data acquisition of
scope scNum. If the scope does not have to preacquire samples, it enters the Waiting
for Trigger state. The scope must be in state Waiting to Start, Finished,
or Interrupted for this function to succeed. Call xPCScopes.ScopeGetState
to check the state of the scope or, for host scopes that are already started, call
xPCScopes.IsScopeFinished. Use the xPCScopes.GetScopes method to get a list of scopes.

 xPCScopes.ScopeStop

7-93

xPCScopes.ScopeStop
Stop data acquisition for scope

Prototype
long ScopeStop(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCScopes.ScopeStop method stops the scope scNum. This sets the scope to
the Interrupted state. The scope must be running for this function to succeed.
Use xPCScopes.ScopeGetState to determine the state of the scope. Use the
xPCScopes.GetScopes method to get a list of scopes.

7 Simulink Real-Time API Reference for COM

7-94

xPCScopes.TargetScopeGetGrid
Get status of grid line for particular scope

Prototype
long TargetScopeGetGrid(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

The xPCScopes.TargetScopeGetGrid method returns the state of the grid lines for
scope scNum. If the method detects an error, it returns -1.

Description

The xPCScopes.TargetScopeGetGrid method gets the state of the grid lines for scope
scNum (which must be of type SCTYPE_TARGET). A return value of 1 implies grid on,
while 0 implies grid off. Note that when the scope mode is set to SCMODE_NUMERICAL,
the grid is not drawn even when the grid mode is set to 1.

Tip

• Use the xPCScopes.GetScopes method to get a list of scopes.

 xPCScopes.TargetScopeGetGrid

7-95

• Use xPCScopes.TargetScopeGetMode and xPCScopes.TargetScopeSetMode to
retrieve and set the scope mode.

7 Simulink Real-Time API Reference for COM

7-96

xPCScopes.TargetScopeGetMode
Get scope mode for displaying signals

Prototype
long TargetScopeGetMode(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

The xPCScopes.TargetScopeGetMode method returns the value corresponding to the
scope mode. The possible values are

• SCMODE_NUMERICAL = 0

• SCMODE_REDRAW = 1

• SCMODE_SLIDING = 2

• SCMODE_ROLLING = 3

If the method detects an error, it returns -1.

Description

The xPCScopes.TargetScopeGetMode method gets the mode of the scope scNum,
which must be of type SCTYPE_TARGET. Use the xPCScopes.GetScopes method to get a
list of scopes.

 xPCScopes.TargetScopeGetMode

7-97

See Also

API function xPCScopes.TargetScopeGetModeStr

7 Simulink Real-Time API Reference for COM

7-98

xPCScopes.TargetScopeGetModeStr
Get scope mode string for displaying signals

Prototype
BSTR TargetScopeGetModeStr(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

The xPCScopes.TargetScopeGetModeStr method returns the string corresponding to
the scope mode. The possible strings are

• Numerical

• Redraw

• Sliding

• Rolling

Description

The xPCScopes.TargetScopeGetModeStr method gets the mode string of the scope
scNum, which must be of type SCTYPE_TARGET. Use the xPCScopes.GetScopes method to
get a list of scopes.

 xPCScopes.TargetScopeGetModeStr

7-99

See Also

API function xPCScopes.TargetScopeGetMode

7 Simulink Real-Time API Reference for COM

7-100

xPCScopes.TargetScopeGetViewMode
Get view mode for target computer display

Prototype
long TargetScopeGetViewMode();

Member Of

XPCAPICOMLIB.xPCScopes

Return

The xPCScopes.TargetScopeGetViewMode method returns the view mode for the
target computer screen. If the method detects an error, it returns -1.

Description

The xPCScopes.TargetScopeGetViewMode method gets the view (zoom) mode for
the target computer display. If the returned value is not zero, the number is of the scope
currently displayed on the screen. If the value is 0, then all defined scopes are displayed
on the target computer screen, but no scopes are in focus (all scopes are unzoomed).

 xPCScopes.TargetScopeGetYLimits

7-101

xPCScopes.TargetScopeGetYLimits
Get y-axis limits for scope

Prototype
VARIANT TargetScopeGetYLimits(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

The xPCScopes.TargetScopeGetYLimits method returns the upper and lower limits
for target scopes.

Description

The xPCScopes.TargetScopeGetYLimits method gets and copies the upper and
lower limits for a scope of type SCTYPE_TARGET and with scope number scNum. If both
elements are zero, the limits are autoscaled. Use the xPCScopes.GetScopes method to get
a list of scopes.

7 Simulink Real-Time API Reference for COM

7-102

xPCScopes.TargetScopeSetGrid
Set grid mode for scope

Prototype
long TargetScopeSetGrid(long scNum, long gridonoff);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.
[in] gridonoff Enter a grid value (0 or 1).

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCScopes.TargetScopeSetGrid method sets the grid of a scope of type
SCTYPE_TARGET and scope number scNum to gridonoff. If gridonoff is 0, the grid is
off. If gridonoff is 1, the grid is on and grid lines are drawn on the scope window. When
the drawing mode of scope scNum is set to SCMODE_NUMERICAL, the grid is not drawn
even when the grid mode is set to 1. Use the xPCScopes.GetScopes method to get a list of
scopes.

 xPCScopes.TargetScopeSetMode

7-103

xPCScopes.TargetScopeSetMode
Set display mode for scope

Prototype
long TargetScopeSetMode(long scNum, long mode);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.
in] mode Enter the value for the mode.

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCScopes.TargetScopeSetMode method sets the mode of a scope of type
SCTYPE_TARGET and scope number scNum to mode. You can use one of the following
constants for mode:

• SCMODE_NUMERICAL = 0

• SCMODE_REDRAW = 1

• SCMODE_SLIDING = 2

• SCMODE_ROLLING = 3

7 Simulink Real-Time API Reference for COM

7-104

Use the xPCScopes.GetScopes method to get a list of scopes.

 xPCScopes.TargetScopeSetViewMode

7-105

xPCScopes.TargetScopeSetViewMode
Set view mode for scope

Prototype
long TargetScopeSetViewMode(long scNum);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCScopes.TargetScopeSetViewMode method sets the target computer screen to
display one scope with scope number scNum. If you set scNum to 0, the target computer
screen displays all the defined scopes. Use the xPCScopes.GetScopes method to get a list
of scopes.

7 Simulink Real-Time API Reference for COM

7-106

xPCScopes.TargetScopeSetYLimits
Set y-axis limits for scope

Prototype
long TargetScopeSetYLimits(long scNum, SAFEARRAY(double)*

Ylimitarray);

Member Of

XPCAPICOMLIB.xPCScopes

Arguments

[in] scNum Enter the scope number.
[in, out] Ylimitarray Enter a two-element array.

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCScopes.TargetScopeSetYLimits method sets the y-axis limits for a scope
with scope number scNum and type SCTYPE_TARGET to the values in the double array
YlimitArray. The first element is the lower limit, and the second element is the upper
limit. Set both limits to 0.0 to specify autoscaling. Use the xPCScopes.GetScopes method
to get a list of scopes.

 xPCTarget.AverageTET

7-107

xPCTarget.AverageTET
Get average task execution time

Prototype
double AverageTET();

Member Of

XPCAPICOMLib.xPCTarget

Return

The xPCTarget.AverageTET method returns the average task execution time (TET) for
the real-time application. If the method detects an error, it returns -1.

Description

The xPCTarget.AverageTET method gets the TET for the real-time application. You
can use this function when the real-time application is running or when it is stopped.

7 Simulink Real-Time API Reference for COM

7-108

xPCTarget.GetAppName
Get real-time application name

Prototype
BSTR GetAppName();

Member Of

XPCAPICOMLib.xPCTarget

Return

The xPCTarget.GetAppName method returns a string with the name of the real-time
application.

Description

The xPCTarget.GetAppName method gets the name of the real-time application. You
can use the return value, model_name, in a printf or similar statement. In case of
error, the string is unchanged. Be sure to allocate enough space to accommodate the
longest target name you have.

 xPCTarget.GetExecTime

7-109

xPCTarget.GetExecTime
Get execution time for real-time application

Prototype
double GetExecTime();

Member Of

XPCAPICOMLib.xPCTarget

Return

The xPCTarget.GetExecTime method returns the current execution time for a real-
time application. If the method detects an error, it returns -1.

Description

The xPCTarget.GetExecTime method gets the current execution time for the running
real-time application. If the real-time application is stopped, the value is the last running
time when the real-time application was stopped. If the real-time application is running,
the value is the current running time.

7 Simulink Real-Time API Reference for COM

7-110

xPCTarget.GetNumOutputs
Get number of outputs

Prototype
long GetNumOutputs();

Member Of

XPCAPICOMLib.xPCTarget

Return

The xPCTarget.GetNumOutputs method returns the number of outputs in the current
real-time application. If the method detects an error, it returns -1.

Description

The xPCTarget.GetNumOutputs method gets the number of outputs in the real-time
application. The number of outputs equals the sum of the input signal widths of the
output blocks at the root level of the Simulink model.

 xPCTarget.GetNumParams

7-111

xPCTarget.GetNumParams
Get number of tunable parameters

Prototype
long GetNumParams();

Member Of

XPCAPICOMLib.xPCTarget

Return

The xPCTarget.GetNumParams method returns the number of tunable parameters in
the real-time application. If the method detects an error, it returns -1.

Description

The xPCTarget.GetNumParams method gets the number of tunable parameters in
the real-time application. Use this method to see how many parameters you can get or
modify.

7 Simulink Real-Time API Reference for COM

7-112

xPCTarget.GetNumSignals
Get number of signals

Prototype
long GetNumSignals();

Member Of

XPCAPICOMLib.xPCTarget

Return

The xPCTarget.GetNumSignals method returns the number of signals in the real-time
application. If the method detects an error, it returns -1.

Description

The xPCTarget.GetNumSignals method gets the total number of signals in the real-
time application that can be monitored from the host. Use this method to see how many
signals you can monitor.

 xPCTarget.GetNumStates

7-113

xPCTarget.GetNumStates
Get number of states

Prototype
long GetNumStates();

Member Of

XPCAPICOMLib.xPCTarget

Return

The xPCTarget.GetNumStates method returns the number of states in the real-time
application. If the method detects an error, it returns -1.

Description

The xPCTarget.GetNumStates method gets the number of states in the real-time
application.

7 Simulink Real-Time API Reference for COM

7-114

xPCTarget.GetOutputLog
Copy output log data to array

Prototype
VARIANT GetOutputLog(long start, long numsamples, long decimation,

long output_id);

Member Of

XPCAPICOMLib.xPCTarget

Arguments

[in] start Enter the index of the first sample to copy.
[in] numsamples Enter the number of samples to copy from the output log.
[in] decimation Select whether to copy all the sample values or every Nth

value.
[in] output_id Enter an output identification number.

Return

The xPCTarget.GetOutputLog method returns output log data. You get the data for
each output signal. If the method detects an error, it returns VT_ERROR, a scalar.

Description

The xPCTarget.GetOutputLog method gets the output log and copies that
log to an array. Output IDs range from 0 to (N-1), where N is the return value of
xPCTarget.GetNumOutputs. Entering 1 for decimation copies all values. Entering N
copies every Nth value.

 xPCTarget.GetOutputLog

7-115

For start, the sample indices range from 0 to (N-1), where N is the return value of
xPCTarget.NumLogSamples. Get the maximum number of samples by calling the
method xPCTarget.NumLogSamples.

Note that the real-time application must be stopped before you get the output log data.

7 Simulink Real-Time API Reference for COM

7-116

xPCTarget.GetParam
Get parameter values

Prototype
VARIANT GetParam(long paramIdx);

Member Of
XPCAPICOMLib.xPCTarget

Arguments
[in] paramIdx Enter the index for a parameter.

Return
The xPCTarget.GetParam method returns the parameter values of a parameter.

Description
The xPCTarget.GetParam method gets the parameter values of a parameter
identified by paramIdx. This method returns an array of type VARIANT containing
the parameter values, with the conversion of the values being done in column-major
format. Each element in the array is a double, regardless of the data type of the
actual parameter. You can query the dimensions of the array by calling the method
xPCTarget.GetParamDims. See the Microsoft Visual Basic .NET 2003 solution located
in matlabroot\toolbox\rtw\targets\xpc\api\VBNET\SigsAndParamsDemo for
an example of how to use this method.

See Also
API method xPCTarget.GetParamDims, xPCTarget.SetParam

 xPCTarget.GetParamDims

7-117

xPCTarget.GetParamDims
Get row and column dimensions of parameter

Prototype
VARIANT GetParamDims(long paramIdx);

Member Of

XPCAPICOMLib.xPCTarget

Arguments

[in] paramIdx Parameter index.

Return

The xPCTarget.GetParamDims method returns a VARIANT array of two elements.

Description

The xPCTarget.GetParamDims method gets a VARIANT array of two elements. The first
element contains the number of rows of the parameter, the second element contains the
number of columns for your parameter.

7 Simulink Real-Time API Reference for COM

7-118

xPCTarget.GetParamIdx
Get parameter index

Prototype
long GetParamIdx(BSTR blockName, BSTR paramName);

Member Of

XPCAPICOMLib.xPCTarget

Arguments

[in] blockName Enter the full block path generated by the Simulink Coder
software.

[in] paramName Enter the parameter name for a parameter associated with
the block.

Return

The xPCTarget.GetParamIdx method returns the parameter index for the parameter
name. If the method detects an error, it returns -1.

Description

The xPCTarget.GetParamIdx method gets the parameter index for the parameter
name (paramName) associated with a Simulink block (blockName). Both blockName
and paramName must be identical to those generated at real-time application building
time. The block names should be referenced from the file model_namept.m in the
generated code, where model_name is the name of the model. Note that a block can have
one or more parameters.

 xPCTarget.GetParamName

7-119

xPCTarget.GetParamName
Get parameter name

Prototype
VARIANT GetParamName(long paramIdx);

Member Of

XPCAPICOMLib.xPCTarget

Arguments

[in] paramIdx Enter a parameter index.

Return

The xPCTarget.GetParamName method returns a VARIANT array that contains two
elements, the block path and parameter name, as strings.

Description

The xPCTarget.GetParamName method gets the parameter name and block name for a
parameter with the index paramIdx. If paramIdx is invalid, xPCGetLastError returns
nonzero, and the strings are unchanged. Get the parameter index with the method
xPCTarget.GetParamIdx.

7 Simulink Real-Time API Reference for COM

7-120

xPCTarget.GetSampleTime
Get sample time

Prototype
double GetSampleTime();

Member Of

XPCAPICOMLib.xPCTarget

Return

The xPCTarget.GetSampleTime method returns the sample time, in seconds, of the
real-time application. If the method detects an error, it returns -1.

Description

The xPCTarget.GetSampleTime method gets the sample time, in seconds, of the real-
time application. You can get the error by using the method xPCGetLastError.

 xPCTarget.GetSignal

7-121

xPCTarget.GetSignal
Get signal value

Prototype
double GetSignal(long sigNum);

Member Of

XPCAPICOMLib.xPCTarget

Arguments

[in] sigNum Enter a signal number.

Return

The xPCTarget.GetSignal method returns the current value of signal sigNum. If the
method detects an error, it returns -1.

Description

The xPCTarget.GetSignal method gets the current value of a signal. Use the
xPCTarget.GetSignalIdx method to get the signal number.

7 Simulink Real-Time API Reference for COM

7-122

xPCTarget.GetSignalidsfromLabel

Get signal IDs from signal label

Prototype

VARIANT GetSignalidsfromLabel(BSTR sigLabel);

Member Of

XPCAPICOMLib.xPCTarget

Arguments

[in] sigLabel Enter a signal label.

Return

The xPCTarget.GetSignalidsfromLabel method returns a VARIANT array of the
signal elements contained in the signal sigLabel. If no labels exist, the method returns
an empty string.

Description

The xPCTarget.GetSignalidsfromLabel method returns a VARIANT array of the
signal elements contained in the signal sigLabel. Signal labels must be unique.

This method assumes that you have labeled the signal for which you request the indices
(see the Signal name parameter of the “Signal Properties Controls”). Note that the
Simulink Real-Time software refers to Simulink signal names as signal labels. The
creator of the application should already know the signal name/label.

 xPCTarget.GetSignalidsfromLabel

7-123

See Also

API method xPCTarget.GetSignalLabel

7 Simulink Real-Time API Reference for COM

7-124

xPCTarget.GetSignalLabel

Get signal label

Prototype

BSTR GetSignalLabel(long sigIdx);

Member Of

XPCAPICOMLib.xPCTarget

Arguments

[in] sigIdx Enter a signal index.

Return

The xPCTarget.GetSignalLabel method returns the label of the signal. If no labels
exist, the method returns an empty string.

Description

The xPCTarget.GetSignalLabel method copies and gets the signal label of a signal
with sigIdx. The method returns the signal label. This method assumes that you
already know the signal index. Signal labels must be unique.

This method assumes that you have labeled the signal for which you request the indices
(see the Signal name parameter of the “Signal Properties Controls”). Note that the
Simulink Real-Time software refers to Simulink signal names as signal labels. The
creator of the application should already know the signal name/label.

 xPCTarget.GetSignalLabel

7-125

See Also

API method xPCTarget.GetSignalidsfromLabel

7 Simulink Real-Time API Reference for COM

7-126

xPCTarget.GetSignalIdx
Get signal index

Prototype
long GetSignalIdx(BSTR sigName);

Member Of

XPCAPICOMLib.xPCTarget

Arguments

[in] sigName Enter a signal name.

Return

The xPCTarget.GetSignalIdx method returns the index for the signal with name
sigName. If the method detects an error, it returns -1.

Description

The xPCTarget.GetSignalIdx method gets the index of a signal. The name must be
identical to the name generated when the application was built. You should reference the
name from the file model_namebio.m in the generated code, where model_name is the
name of the model. The creator of the application should already know the signal name.

 xPCTarget.GetSignalName

7-127

xPCTarget.GetSignalName
Copy signal name to character array

Prototype
BSTR GetSignalName(long sigIdx);

Member Of

XPCAPICOMLib.xPCTarget

Arguments

[in] sigIdx Enter a signal index.

Return

The xPCTarget.GetSignalName method returns the name of the signal.

Description

The xPCTarget.GetSignalName method copies and gets the signal name, including the
block path, of a signal with sigIdx. The method returns a signal name, which makes
it convenient to use in a printf or similar statement. This method assumes that you
already know the signal index.

7 Simulink Real-Time API Reference for COM

7-128

xPCTarget.GetSignals
Get vector of signal values

Prototype
VARIANT GetSignals(long NumOfSignals, SAFEARRAY(int)*

SignalsIdxArray);

Member Of

XPCAPICOMLib.xPCTarget

Arguments

[in] NumOfSignals Enter the number of signals to acquire (the number of
IDs in SignalsIdxArray).

[out] SignalsIdxArray Enter the IDs of the signals to acquire.

Return

The xPCTarget.GetSignals method returns a double-valued variant array containing
the current value of a vector of signals. If the method detects an error, it returns
VT_ERROR, a scalar.

Description

This function returns the values of a vector of up to 1000 signals as fast as it can acquire
them. The values are converted to doubles regardless of the actual data type of the
signal.

Tip

 xPCTarget.GetSignals

7-129

• Pass an integer array of signal numbers into SignalsIdxArray. Get the signal
numbers with the function xPCTarget.GetSignalIdx.

• The signal values may not be at the same time step. To get signal values at the same
time step, define a scope of type SCTYPE_HOST and use xPCScopes.ScopeGetData.

The function xPCTarget.GetSignal does the same thing for a single signal, and could
be used multiple times to achieve the same result. However, xPCGetSignals is faster and
the signal values are more likely to be spaced closely together.

See Also

API functions xPCTarget.GetSignal, xPCTarget.GetSignalIdx

7 Simulink Real-Time API Reference for COM

7-130

xPCTarget.GetSignalWidth
Get width of signal

Prototype
long GetSignalWidth(long sigIdx);

Member Of

XPCAPICOMLib.xPCTarget

Arguments

[in] sigIdx Enter the index of a signal.

Return

The xPCTarget.GetSignalWidth method returns the signal width for a signal with
sigIdx. If the method detects an error, it returns -1.

Description

The xPCTarget.GetSignalWidth method gets the number of signals for a specified
signal index. Although signals are manipulated as scalars, the width of the signal might
be useful to reassemble the components into a vector. A signal's width is the number of
signals in the vector.

 xPCTarget.GetStateLog

7-131

xPCTarget.GetStateLog
Get state log

Prototype
VARIANT GetStateLog(long start, long numsamples, long decimation,

long state_id);

Member Of

XPCAPICOMLib.xPCTarget

Arguments

[in] start Enter the index of the first sample to copy.
[in] numsamples Enter the number of samples to copy from the output log.
[in] decimation Select whether to copy all the sample values or every Nth

value.
[in] state_id Enter a state identification number.
[out, retval]

Outarray

The log is stored in Outarray, whose allocation is the
responsibility of the caller.

Return

The xPCTarget.GetStateLog method returns the state log. If the method detects an
error, it returns VT_ERROR, a scalar.

Description

The xPCTarget.GetStateLog method gets the state log. You get the data for each
state signal in turn by specifying the state_id. State IDs range from 1 to (N-1), where

7 Simulink Real-Time API Reference for COM

7-132

N is the return value of xPCTarget.GetNumStates. Entering 1 for decimation copies
all values. Entering N copies every Nth value. For start, the sample indices range
from 0 to (N-1), where N is the return value of xPCTarget.NumLogSamples. Use the
xPCTarget.NumLogSamples method to get the maximum number of samples.

Note that the real-time application must be stopped before you get the number.

 xPCTarget.GetStopTime

7-133

xPCTarget.GetStopTime
Get stop time

Prototype
double GetStopTime();

Member Of

XPCAPICOMLib.xPCTarget

Return

The xPCTarget.GetStopTime method returns the stop time as a double, in seconds, of
the real-time application. If the method detects an error, it returns -1.

Description

The xPCTarget.GetStopTime method gets the stop time, in seconds, of the real-time
application. This is the amount of time the real-time application runs before stopping.

7 Simulink Real-Time API Reference for COM

7-134

xPCTarget.GetTETLog
Get TET log

Prototype
VARIANT GetTETLog(long start, long numsamples, long decimation);

Member Of

XPCAPICOMLib.xPCTarget

Arguments

[in] start Enter the index of the first sample to copy.
[in] numsamples Enter the number of samples to copy from the TET log.
[in] decimation Select whether to copy all the sample values or every Nth value.
[out, retval]

Outarray

The log is stored in Outarray, whose allocation is the
responsibility of the caller.

Return

The xPCTarget.GetTETLog method returns the TET log. If the method detects an error,
it returns VT_ERROR, a scalar.

Description

The xPCTarget.GetTETLog method gets the task execution time (TET) log.
Entering 1 for decimation copies all values. Entering N copies every Nth value.
For start, the sample indices range from 0 to (N-1), where N is the return value of
xPCTarget.NumLogSamples. Use the xPCTarget.NumLogSamples method to get the
maximum number of samples.

 xPCTarget.GetTETLog

7-135

Note that the real-time application must be stopped before you get the number.

7 Simulink Real-Time API Reference for COM

7-136

xPCTarget.GetTimeLog
Get time log

Prototype
VARIANT GetTimeLog(long start, long numsamples, long decimation);

Member Of

XPCAPICOMLib.xPCTarget

Arguments

[in] start Enter the index of the first sample to copy.
[in] numsamples Enter the number of samples to copy from the time log.
[in] decimation Select whether to copy all the sample values or every Nth

value.

Return

The xPCTarget.GetTimeLog method returns the time log. If the method detects an
error, it returns VT_ERROR, a scalar.

Description

The xPCTarget.GetTimeLog method gets the time log. This is especially relevant in
the case of value-equidistant logging, where the logged values might not be uniformly
spaced in time. Entering 1 for decimation copies all values. Entering N copies every Nth
value. For start, the sample indices range from 0 to (N-1), where N is the return value of
xPCTarget.NumLogSamples. Use the xPCTarget.NumLogSamples method to get the
number of samples.

 xPCTarget.GetTimeLog

7-137

Note that the real-time application must be stopped before you get the number.

7 Simulink Real-Time API Reference for COM

7-138

xPCTarget.GetxPCError
Get error string

Prototype
BSTR GetxPCError();

Member Of

XPCAPICOMLib.xPCTarget

Return

The xPCTarget.GetxPCError method returns the string for the last reported error. If
the software has not reported an error, this method returns 0.

Description

The xPCTarget.GetxPCError method gets the string of the error last reported by
another COM API method. This value is reset every time you call a new method.
Therefore, you should check this constant value immediately after a call to an API COM
method. You can use this method in conjunction with the xPCTarget.isxPCError
method, which detects that an error has occurred.

See Also

API method xPCTarget.isxPCError

 xPCTarget.Init

7-139

xPCTarget.Init
Initialize target object to communicate with target computer

Prototype
long Init(IxPCProtocol* xPCProtocol);

Member Of

XPCAPICOMLib.xPCTarget

Return

If the method detects an error, it returns -1. Otherwise, it returns 0.

If the xPCTarget.Init method initializes the target object without detecting an error, it
returns 0. If the target object fails to initialize, this method returns -1.

Description

The xPCTarget.Init method initializes the target object to communicate with the
target computer referenced by the xPCProtocol object.

7 Simulink Real-Time API Reference for COM

7-140

xPCTarget.IsAppRunning
Return running status for real-time application

Prototype
long IsAppRunning();

Member Of

XPCAPICOMLib.xPCTarget

Return

If the real-time application is stopped, the xPCTarget.IsAppRunning method returns
0. If the real-time application is running, this method returns 1. If the method detects an
error, it returns -1.

Description

The xPCTarget.IsAppRunning method returns 1 or 0 depending on whether the real-
time application is stopped or running.

 xPCTarget.IsOverloaded

7-141

xPCTarget.IsOverloaded
Return overload status for target computer

Prototype
long IsOverloaded();

Member Of

XPCAPICOMLib.xPCTarget

Return

If the real-time application has overloaded the CPU, the xPCTarget.IsOverloaded
method returns 1. If it has not overloaded the CPU, the method returns 0. If the method
detects an error, it returns -1.

Description

The xPCTarget.IsOverloaded method checks if the real-time application has
overloaded the target computer and returns 1 if it has and 0 if it has not. If the real-time
application is not running, the method returns 0.

7 Simulink Real-Time API Reference for COM

7-142

xPCTarget.isxPCError
Return error status

Prototype
long isxPCError();

Member Of

XPCAPICOMLIB.xPCTarget

Return

If an error occurred, the method returns 1. Otherwise, it returns 0.

Description

Use the xPCTarget.isxPCError method to check for errors that might occur after a
call to the xPCTarget class methods. If the method detects that an error occurred, call
the xPCTarget.GetxPCError method to get the string for the error.

See Also

API method xPCTarget.GetxPCError

 xPCTarget.LoadApp

7-143

xPCTarget.LoadApp
Load real-time application onto target computer

Prototype
long LoadApp(BSTR pathstr, BSTR filename);

Member Of

XPCAPICOMLIB.xPCTarget

Arguments

[in] pathstr Enter the full path to the real-time application file, excluding
the file name. For example, in C, use a string like "C:\\work",
in Microsoft Visual Basic, use a string like 'C:\work'.

[in] filename Enter the name of a compiled real-time application (*.dlm)
without the file extension. For example, in C use a string
like "xpcosc", in Microsoft Visual Basic, use a string like
'xpcosc'.

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCTarget.LoadApp method loads the compiled real-time application to the target
computer. pathstr must not contain the trailing backslash. pathstr can be set to
NULL or to the string 'nopath' if the application is in the current folder. The variable
filename must not contain the real-time application extension.

7 Simulink Real-Time API Reference for COM

7-144

Before returning, xPCTarget.LoadApp waits for a certain amount of time before
checking whether the model initialization is complete. In the case where the model
initialization is incomplete, xPCTarget.LoadApp returns a timeout error to indicate a
connection problem (for example, ETCPREAD). By default, xPCTarget.LoadApp checks
for target readiness five times, with each attempt taking approximately 1 second (less if
the target is ready). However, for larger models or models requiring longer initialization
(for example, those with thermocouple boards), the default might not be long enough and
a spurious timeout can be generated. The methods xPCProtocol.GetLoadTimeOut and
xPCProtocol.SetLoadTimeOut control the number of attempts made.

 xPCTarget.MaximumTET

7-145

xPCTarget.MaximumTET
Copy maximum task execution time to array

Prototype
VARIANT MaximumTET();

Member Of

XPCAPICOMLIB.xPCTarget

Return

The xPCTarget.MaximumTET method returns a VARIANT object containing the
maximum task execution time (TET) and the time at which the maximum TET was
achieved. The maximum TET value is copied into the first element, and the time at
which it was achieved is copied into the second element.

Description

The xPCTarget.MaximumTET method returns the maximum TET that was achieved
during the previous real-time application run.

7 Simulink Real-Time API Reference for COM

7-146

xPCTarget.MaxLogSamples
Return maximum number of samples that can be in log buffer

Prototype
long MaxLogSamples();

Member Of

XPCAPICOMLIB.xPCTarget

Return

The xPCTarget.MaxLogSamples method returns the total number of samples. If the
method detects an error, it returns -1.

Description

The xPCTarget.MaxLogSamples method returns the total number of samples that can
be returned in the logging buffers.

Note that the real-time application must be stopped before you get the number.

 xPCTarget.MinimumTET

7-147

xPCTarget.MinimumTET
Copy minimum task execution time to array

Prototype
VARIANT MinimumTET();

Member Of

XPCAPICOMLIB.xPCTarget

Return

The xPCTarget.MinimumTET method returns a VARIANT object containing the
minimum task execution time (TET) and the time at which the minimum TET was
achieved. The minimum TET value is copied into the first element, and the time at which
it was achieved is copied into the second element.

Description

The xPCTarget.MinimumTET method returns the minimum task execution time (TET)
that was achieved during the previous real-time application run.

7 Simulink Real-Time API Reference for COM

7-148

xPCTarget.NumLogSamples
Return number of samples in log buffer

Prototype
long NumLogSamples();

Member Of

XPCAPICOMLIB.xPCTarget

Return

The xPCTarget.NumLogSamples method returns the number of samples in the log
buffer. If the method detects an error, it returns -1.

Description

The xPCTarget.NumLogSamples method returns the number of samples in
the log buffer. In contrast to xPCTarget.MaxLogSamples, which returns the
maximum number of samples that can be logged (because of buffer size constraints),
xPCtarget.NumLogSamples returns the number of samples actually logged.

Note that the real-time application must be stopped before you get the number.

 xPCTarget.NumLogWraps

7-149

xPCTarget.NumLogWraps
Return number of times log buffer wraps

Prototype
long NumLogWraps();

Member Of

XPCAPICOMLIB.xPCTarget

Return

The xPCTarget.NumLogWraps method returns the number of times the log buffer
wraps. If the method detects an error, it returns -1.

Description

The xPCTarget.NumLogWraps method returns the number of times the log buffer
wraps.

Note that the real-time application must be stopped before you get the number.

7 Simulink Real-Time API Reference for COM

7-150

xPCTarget.SetParam
Change parameter value

Prototype
long SetParam(long paramIdx, SAFEARRAY(double)* newparamVal);

Member Of
XPCAPICOMLIB.xPCTarget

Arguments
[in] paramIdx Parameter index.
[in, out] newparamVal Vector of doubles, assumed to be the size required by the

parameter type.

Return
If the method detects an error, it returns 0. Otherwise, it returns -1.

Description
The xPCTarget.SetParam method sets the parameter paramIdx to the value in
newparamVal. For matrices, newparamVal should be a vector representation of the
matrix in column-major format. Although newparamVal is a vector of doubles, the
method converts the values to the expected data types (using truncation) before setting
them.

See Also
API methods xPCTarget.GetParam, xPCTarget.GetParamDims,
xPCTarget.GetParamIdx

 xPCTarget.SetSampleTime

7-151

xPCTarget.SetSampleTime
Change sample time for real-time application

Prototype
long SetSampleTime(double ts);

Member Of

XPCAPICOMLIB.xPCTarget

Arguments

[in] ts Sample time for the real-time application.

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCTarget.SetSampleTime method sets the sample time, in seconds, of the real-
time application to ts. Use this method only when the application is stopped.

7 Simulink Real-Time API Reference for COM

7-152

xPCTarget.SetStopTime
Change stop time of real-time application

Prototype
long SetStopTime(double tfinal);

Member Of

XPCAPICOMLIB.xPCTarget

Arguments

[in] tfinal Enter the stop time, in seconds.

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCTarget.SetStopTime method sets the stop time of the real-time application to
the value in tfinal. The real-time application will run for this number of seconds before
stopping. Set tfinal to -1.0 to set the stop time to infinity.

 xPCTarget.StartApp

7-153

xPCTarget.StartApp
Start real-time application

Prototype
long StartApp()

Member Of

XPCAPICOMLIB.xPCTarget

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCTarget.StartApp method starts the real-time application loaded on the target
computer.

7 Simulink Real-Time API Reference for COM

7-154

xPCTarget.StopApp
Stop real-time application

Prototype
long StopApp();

Member Of

XPCAPICOMLIB.xPCTarget

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCTarget.StopApp method stops the real-time application loaded on the
target computer. The real-time application remains loaded, and the parameter
changes you made remain intact. If you want to stop and unload an application, use
xPCTarget.UnLoadApp.

 xPCTarget.UnLoadApp

7-155

xPCTarget.UnLoadApp
Unload real-time application

Prototype
long UnLoadApp();

Member Of

XPCAPICOMLIB.xPCTarget

Return

If the method detects an error, it returns 0. Otherwise, it returns -1.

Description

The xPCTarget.UnloadApp method stops the current real-time application, removes
it from the target computer memory, and resets the target computer in preparation
for receiving a new real-time application. The method xPCTarget.LoadApp calls this
method before loading a new real-time application.

7-156

8

MATLAB API

8 MATLAB API

8-2

fc422mexcalcbits
Calculate parameter values for Fastcom 422/2-PCI board

Syntax

[a,b] = fc422mexcalcbits(frequency)

[a,b,df] = fc422mexcalcbits(frequency)

Description

[a,b] = fc422mexcalcbits(frequency) accepts a baud rate and converts this value
into values for the parameter Clocks Bits of the Fastcom® 422/2-PCI driver clock.

[a,b,df] = fc422mexcalcbits(frequency) accepts a baud rate and converts this
value into a vector containing:

• Values for the parameter Clocks Bits of the Fastcom 422/2-PCI driver block.
• The actual baud rate that is created by the Clocks Bits parameters.

Examples

Clocks Bits Values

[a,b] = fc422mexcalcbits(30e3)

a =

 2111792

b =

 23

Clocks Bits Values with Actual Result

[a,b,df] = fc422mexcalcbits(1.49e6)

 fc422mexcalcbits

8-3

a =

 3805896

b =

 23

df =

 1.4901e+06

Input Arguments

frequency — Baud rate for the board, in units of baud/second
positive-valued scalar

The baud rate must be between 30e3 and 1.5e6. This limitation is a hardware
limitation of the clock circuit.
Example: 30e3

Data Types: double

Output Arguments

[a,b] — Values for driver block parameter
vector of scalars

[a,b,df] — Values for driver block parameter and actual baud rate that results
vector of scalars

• a,b – Values for the driver block parameter.
• df – The actual baud rate that is created by the driver block parameter. The clock

circuit has limited resolution and is unable to perfectly match an arbitrary frequency.

8 MATLAB API

8-4

macaddr
Convert string-based MAC address to vector-based address

Syntax

macaddr(MAC_address)

Description

macaddr(MAC_address) converts a string-based MAC address to a vector-based MAC
address.

Examples

Simple

macaddr('01:23:45:67:89:ab')

ans =

 1 35 69 103 137 171

Input Arguments

MAC_address — MAC address to be converted
delimited string

The value is entered as a string comprised of six colon-delimited fields of two-digit
hexadecimal numbers.
Example: '01:23:45:67:89:ab'
Data Types: char

See Also
“Model-Based Ethernet Communications”

 profile_xpc

8-5

profile_xpc

Collect profiling data

Syntax

profData = profile_xpc(profileInfo)

Description

profData = profile_xpc(profileInfo) collects and displays execution profiling
data from a target computer that is running a suitably configured application. By
default, it displays an execution profile plot and a code execution profiling report.

To configure a model for execution profiling, check the Measure task execution time
option in the Verification tab of the Code Generation dialog box.

Examples

Concurrent Execution Example

Profile the concurrent execution model dxpcmds6t using default settings on a multicore
target computer.

Configure model dxpcmds6t for profiling. Build, download, and execute the model.

Profile the real-time application execution.

profileInfo.modelname = 'dxpcmds6t.mdl';

profData = profile_xpc(profileInfo);

The Execution Profile plot shows the allocation of execution cycles across the four
processors, indicated by the colored horizontal bars.

8 MATLAB API

8-6

The Code Execution Profiling Report displays model execution profile results for each
task.

 profile_xpc

8-7

Profile Data Description

Maximum turnaround
time

Longest time between when the task starts and finishes. This
time includes task preemptions (interrupts).

Average turnaround time Average time between when the task starts and finishes.
This time includes task preemptions (interrupts).

Maximum execution time Longest time between when the task starts and finishes. This
time does not include task preemptions (interrupts).

Average execution time Average time between when the task starts and finishes.
This time does not include task preemptions (interrupts).

Calls Number of times the generated code section is called.

8 MATLAB API

8-8

To display the profile data for the generated code section, click the Membrane icon in
the Coder Execution Profiling Report.

• “Configure Real-Time Application for Profiling”
• “Generate Real-Time Application Execution Profile”

Input Arguments

profileInfo — Profile configuration information
structure

Profile configuration data, consisting of the following fields:

rawdataonhost — Flag specifying whether the raw data is on development or target
computer
0 (default) | 1

• 0 — The raw data file xPCTrace.csv is on the target computer. Transfer the file
from the target computer to the host.

• 1 — The raw data file xPCTrace.csv is in the current folder on the development
computer.

Data Types: double

modelname — Name of the model to be profiled
usrname

The name can include the model file extension.
Data Types: char

noplot — Flag suppressing execution profile plot
0 (default) | 1

• 0 — Display the execution profile plot on the development computer monitor.
• 1 — Do not display the execution profile plot on the development computer monitor.

Data Types: double

noreport — Flag suppressing code execution profiling report
0 (default) | 1

 profile_xpc

8-9

• 0 — Display the code execution profiling report on the development computer
monitor.

• 1 — Do not display the code execution profiling report on the development computer
monitor.

Data Types: double

Output Arguments

profData — Profile results data
structure

Profile results data stored in an object of type coder.profile.ExecutionTime.
The same data is assigned to the variable declared in the Configuration Parameters
Workspace variable text box.

TimerTicksPerSecond — Number of seconds per timer tick
double

Scales the execution time tick.

Sections — Array of results data for profiled code sections
array

Each array item is an object of type coder.profile.ExecutionTimeSection.

See Also
Sections | TimerTicksPerSecond

8 MATLAB API

8-10

slrt
Create object to manage target computer

Syntax

target_object = slrt

target_object = slrt(target_name)

Description

target_object = slrt constructs a target object representing the default target
computer.

target_object = slrt(target_name) constructs a target object representing the
target computer designated by target_name.

Examples

Default target computer

Creates a target object to communicate with the default target computer. Reports the
status of the default target computer, in this case connected with the loader running.

target_object = slrt

Target: TargetPC1

 Connected = Yes

 Application = loader

Specific target computer

Creates a target object to communicate with target computer TargetPC1, Reports the
status of the target computer, in this case not connected.

target_object = slrt('TargetPC1')

Target: TargetPC1

 slrt

8-11

 Connected = No

Input Arguments

target_name — Name assigned to target computer
string
Example: ‘TargetPC1’
Data Types: char

Output Arguments

target_object — Target object representing target computer
structure

See Also
SimulinkRealTime.target (constructor) | Target Settings Properties

8 MATLAB API

8-12

slrtbench
Benchmark Simulink Real-Time models on target computer

Syntax

slrtbench

slrtbench benchmark

slrtbench benchmark -reboot

slrtbench benchmark -cleanup

slrtbench benchmark -verbose

slrtbench benchmark -reboot -cleanup -verbose

expected_results = slrtbench()

current_results = slrtbench(benchmark, ___)

Description

slrtbench benchmarks the real-time execution performance of Simulink Real-Time
applications on your target computer. It compares the result to stored benchmark results
from other computers.

Benchmark execution includes generating benchmark models, building and downloading
Simulink Real-Time applications, searching for the minimal achievable sample time, and
displaying results.

slrtbench without an argument displays representative results for benchmarks run on
various target computers with various compiler versions. Display includes:

• Relative Performance — Bar graph containing the computers tested, ranked by
relative performance.

• Minimal achievable sample times in µs — Table containing, for each target computer
tested, the minimal achievable sample time for the benchmarks, in microseconds.

• Target Information — Technical information about the target computers
benchmarked.

Depending upon the value of benchmark, slrtbench benchmark produces different
outputs:

 slrtbench

8-13

• slrtbench this displays benchmark results your target computer, compared with
the representative benchmark results for other target computers:

• Relative Performance — Bar graph containing the computers tested, ranked by
relative performance.

• Minimal achievable sample times in µs — Table containing, for each target
computer tested, the minimal achievable sample time for the benchmarks, in
microseconds.

• Target Information — Technical information about the target computers
benchmarked.

The entry for your target computer is highlighted.
• slrtbench benchmark prints the benchmark name, the number of blocks, the model

build time in seconds, the execution time in seconds, and the minimal achievable
sample time in microseconds in the Command Window.

slrtbench benchmark -reboot runs the benchmark, then restarts the target
computer.

slrtbench benchmark -cleanup runs the benchmark, plots or prints benchmark
results, and deletes the build files.

slrtbench benchmark -verbose prints build output, runs the benchmark, and plots
or prints benchmark results.

slrtbench benchmark -reboot -cleanup -verbose prints build output, restarts
the target computer, deletes build files, and plots or prints results.

You can add zero or more of these control arguments in arbitrary order.

expected_results = slrtbench() returns the benchmark results for the five
predefined benchmarks in a structure array.

Depending upon the value of benchmark, current_results = slrtbench(
benchmark, ___) returns different results:

• slrtbench('this') returns the benchmark results for the predefined benchmarks
in a structure array.

• slrtbench(benchmark) returns the benchmark results for the specified model in a
structure.

8 MATLAB API

8-14

Examples

slrtbench

Show representative benchmark results from various target computers.

Start the target computer and run confidence test.

slrttest

Display representative results on predefined benchmarks.

slrtbench

 slrtbench

8-15

slrtbench this

Benchmark the target computer with the predefined benchmarks.

Start the target computer and run confidence test.

8 MATLAB API

8-16

slrttest

Run the benchmark models and display results.

slrtbench this

Starting Simulink Real-Time build procedure

 for model: xpcminimal

Successful completion of build procedure for model: xpcminimal

Looking for target: TargetPC1

Download model onto target: TargetPC1

Running benchmark for model: xpcminimal

.

.

.

Running benchmark for model: f14tmp1

.

.

.

Running benchmark for model: f14tmp5

.

.

.

Running benchmark for model: f14tmp10

.

.

.

Running benchmark for model: f14tmp25

.

.

.

Running benchmark for model: f14tmp100

 slrtbench

8-17

slrtbench this -verbose -reboot -cleanup

Benchmark the target computer with the predefined benchmarks and all control options.

Start the target computer and run confidence test.

8 MATLAB API

8-18

slrttest

Run the benchmark models, restart the target computer, delete build files, and display
results.

slrtbench this -verbose -reboot -cleanup

Starting Simulink Real-Time build procedure

 for model: xpcminimal

Generating code into build folder: xpcminimal_xpc_rtw

Invoking Target Language Compiler on xpcminimal.rtw

.

.

.

Successful completion of build procedure for model:

 xpcminimal

Looking for target: TargetPC1

Download model onto target: TargetPC1

Create SimulinkRealTime.target object tg

Target: TargetPC1

 Connected = Yes

.

.

.

Running benchmark for model: xpcminimal

Reboot target: TargetPC1........ OK.

.

.

Running benchmark for model: f14tmp1

Reboot target: TargetPC1........ OK.

.

.

.

Running benchmark for model: f14tmp5

Reboot target: TargetPC1........ OK.

.

.

.

Running benchmark for model: f14tmp10

Reboot target: TargetPC1........ OK.

.

.

.

Running benchmark for model: f14tmp25

Reboot target: TargetPC1........ OK.

 slrtbench

8-19

.

.

.

Running benchmark for model: f14tmp100

Reboot target: TargetPC1........ OK.

8 MATLAB API

8-20

slrtbench xpcosc

Use model xpcosc to benchmark the target computer, and then clean up build files

Start the target computer and run confidence test.

 slrtbench

8-21

slrttest

Run benchmark on xpcosc, delete build files, and print results.

slrtbench xpcosc

Starting Simulink Real-Time build procedure for model: xpcosc

Successful completion of build procedure for model: xpcosc

Looking for target: TargetPC1

Download model onto target: TargetPC1

Running benchmark for model: xpcosc

Benchmark results for model: xpcosc

Number of blocks in model: 10

Elapsed time for model build (sec): 33.4

Elapsed time for model benchmark (sec): 236.7

Minimal achievable sample time (microsec): 12.4

slrtbench xpcosc --verbose -reboot -cleanup

Use model xpcosc to benchmark the target computer with all control options.

Start the target computer and run confidence test.

slrttest

Run benchmark on xpcosc, restart the target computer, delete build files, and print
results.

slrtbench xpcosc -verbose -reboot -cleanup

Starting Simulink Real-Time build procedure for model: xpcosc

Generating code into build folder: xpcosc_slrt_rtw

Invoking Target Language Compiler on xpcosc.rtw

.

.

.

Successful completion of build procedure for model: xpcosc

Looking for target: TargetPC1

Download model onto target: TargetPC1

Create SimulinkRealTime.target object tg

Target: TargetPC1

 Connected = Yes

8 MATLAB API

8-22

.

.

.

Running benchmark for model: xpcosc

Reboot target: TargetPC1........ OK

Benchmark results for model: xpcosc

Number of blocks in model: 10

Elapsed time for model build (sec): 29.4

Elapsed time for model benchmark (sec): 210.5

Minimal achievable sample time (microsec): 10.9

expected_results = slrtbench()

Return a structure array containing benchmark results showing what to expect of
various target computers.

Start the target computer and run confidence test.

slrttest

Return an array with representative results for each processor type, in arbitrary order.

expected_results = slrtbench();

expected_results(1)

ans =

 Machine: 'Speedgoat Performance real-time target (Core i7)'

 BenchResults: [1x6 double]

 Desc: '% Intel(R) Core(TM) i7-3770K CPU @ 3.50GHz

% RAM: 2...'

 slrtbench

8-23

current_results = slrtbench('xpcosc','-verbose','-reboot','-cleanup')

Benchmark the target computer using the xpcosc model with all control options. Return
a structure array with results.

8 MATLAB API

8-24

Start the target computer and run confidence test.

slrttest

Build 'xpcosc', print build messages, run benchmark, restart the target computer,
delete build files, and return results.

current_results = slrtbench('xpcosc','-verbose','-reboot',

 '-cleanup')

Starting Simulink Real-Time build procedure for model: xpcosc

Generating code into build folder: xpcosc_slrt_rtw

Generated code for 'xpcosc' is up to date because no

 structural, parameter or code replacement library

 changes were found.

.

.

.

Successful completion of build procedure for model: xpcosc

Looking for target: TargetPC1

Download model onto target: TargetPC1

Create SimulinkRealTime.target object tg

Target: TargetPC1

 Connected = Yes

.

.

.

Running benchmark for model: xpcosc

Reboot target: TargetPC1......... OK

Benchmark results for model: xpcosc

Number of blocks in model: 10

Elapsed time for model build (sec): 14.5

Elapsed time for model benchmark (sec): 200.5

Minimal achievable sample time (microsec): 11.9

current_results =

 Name: 'xpcosc'

 nBlocks: 10

 BuildTime: 14.4840

 BenchTime: 200.4516

 slrtbench

8-25

 Tsmin: 1.1875e-05

Input Arguments

benchmark — Benchmark name or model name
this | usermdl | minimal | f14 | f14*5 | f14*10 | f14*25 | f14*100

Benchmark, specified as a literal string or string variable containing one of:

this All five predefined benchmark models
(minimal, f14, f14*5, f14*10, f14*25)

usermdl Your model, usermdl.
minimal Minimal model consisting of three blocks

(Constant, Gain, Termination).
f14 Standard Simulink example f14 (62 blocks,

10 continuous states).
f14*5 Five f14 systems modeled in subsystems

(310 blocks, 50 continuous states).
f14*10 Ten f14 systems (620 blocks, 100

continuous states).
f14*25 25 f14 systems (1550 blocks, 250

continuous states).
f14*100 100 f14 systems (6200 blocks,

1000continuous states).

When using function form, enclose literal arguments (this, -reboot) in single quotes
('this','-reboot').

Example:
Data Types: char

Output Arguments

expected_results — Results of predefined benchmarks previously run on representative
target computers
struct array

8 MATLAB API

8-26

Contains representative benchmark results in a structure array with element fields:

Machine Target computer information string
containing CPU type, CPU speed, compiler

BenchResults Target computer benchmark performance
for all five predefined benchmarks

Desc Target computer descriptor string
containing machine type, RAM size, cache
size

current_results — Current results of specified benchmark
struct

Contains actual benchmark results in a structure with fields:

Name Benchmark name
nBlocks Number of blocks in benchmark
BuildTime Elapsed time in seconds to build

benchmark
BenchTime Elapsed time in seconds to run benchmark
Tsmin Minimal achievable sample time in seconds

for benchmark

More About

Tips

• Before you run slrtbench, you must be able to start the target computer, connect
the development computer to the target computer, and run the confidence test,
slrttest, with no failures.

• After running slrtbench on your model and system, set your model sample time to
the minimal achievable sample time value reported. Smaller sample times overload
the target computer.

• The stored benchmark results were collected with Multicore CPU support
disabled. When evaluating your system, temporarily disable this target setting using
slrtexplr.

 slrtbench

8-27

• The stored benchmark models were compiled using a sampling of the supported
compilers. When evaluating your system, find the closest match to the compiler that
you are using.

• Benchmark minimal has neither continuous nor discrete states. It provides an
indication of the target computer interrupt latencies.

• http://www.mathworks.com/support/compilers/current_release/

See Also
slrttest

http://www.mathworks.com/support/compilers/current_release/

8 MATLAB API

8-28

slrtdrivertool

Construct skeleton for custom driver

Syntax

slrtdrivertool

Description

slrtdrivertool opens the Simulink Real-Time Driver Authoring Tool. Using this tool,
you can:

• Define the driver name.
• Specify how the sample time is defined (inherited or as a mask parameter).
• Define input and output ports.
• Define parameters and working variables.
• Generate a C file template (optional).
• Generate a block and mask dialog box (optional).
• Save and load settings.
• Build a skeleton driver.

Examples

Define a skeleton driver

slrtdrivertool

 slrtdrivertool

8-29

8 MATLAB API

8-30

slrtexplr
Configure target computer and real-time application for execution

Syntax

slrtexplr

Description

The command slrtexplr opens Simulink Real-Time Explorer, providing the following
capabilities:

• Environment configuration — Use the Target Properties pane to configure the
Simulink Real-Time environment properties and create a Simulink Real-Time
bootable image.

Use node File system under the MATLAB Session tree to browse the target
computer file system.

• Control — Use the Targets and Applications panes to load, unload, and run real-
time applications. You can change stop time and sample times without regenerating
code. You can get task execution time information during or after the last run.

• Signal acquisition — Use the Scopes pane and the Model Hierarchy node in the
Applications pane to interactively monitor signals, add a host, target, or file scope,
add or remove signals, and save and load signal groups.

• Parameter tuning — Use the Model Hierarchy node in the Applications pane to
change tunable parameters in your real-time application and save and load parameter
groups.

• Instrumentation — Use the Palette and Panels panes to create a graphical
instrument panel for acquiring signals and tuning parameters.

•
Window configuration — Use the tab and the icon to make multiple workspaces
visible simultaneously.

Use File > Save Layout and Load Layout to save and restore the Simulink Real-
Time Explorer window layout.

 slrtexplr

8-31

Examples

Default

Open Simulink Real-Time Explorer

slrtexplr

• “Ethernet Link Setup”
• “Serial Link Setup”
• “Target Computer Settings”
• “Target Boot Methods”
• “Execute Real-Time Application Using Simulink Real-Time Explorer”
• “Monitor Signals Using Simulink Real-Time Explorer”
• “Create Target Scopes Using Simulink Real-Time Explorer”
• “Create Host Scopes Using Simulink Real-Time Explorer”
• “Create File Scopes Using Simulink Real-Time Explorer”

8 MATLAB API

8-32

• “Tune Parameters Using Simulink Real-Time Explorer”

 slrtgetCC

8-33

slrtgetCC
Compiler settings for development computer environment

Syntax

slrtgetCC

type = slrtgetCC

type = slrtgetCC('Type')

location = slrtgetCC('Location')

[type,location] = slrtgetCC

slrtgetCC('supported')

slrtgetCC('installed')

[compilers] = slrtgetCC('installed')

Description

slrtgetCC displays the compiler type and location in the Command Window.

type = slrtgetCC and type = slrtgetCC('Type') both return the compiler type
in type.

location = slrtgetCC('Location') returns the compiler location in location.

The mex -setup command sets the default compiler for Simulink Real-Time builds,
provided the MEX compiler is a supported Microsoft compiler. slrtgetCC returns
the result of the slrtsetCC command only, not the result of the mex command. If
slrtgetCC returns an empty string as location, Simulink Real-Time is using the MEX
compiler.

[type,location] = slrtgetCC returns the compiler type and its location in type
and location.

slrtgetCC('supported') displays the compiler versions supported by the Simulink
Real-Time environment.

slrtgetCC('installed') displays the supported compilers installed on the
development computer.

8 MATLAB API

8-34

[compilers] = slrtgetCC('installed') returns in a structure the supported
compilers installed on the development computer.

Examples
Display compiler type and location

slrtgetCC

Compiler Settings:

 Type = VisualC

 Location = C:\Program Files (x86)\Microsoft Visual Studio 10.0

Return compiler type

type = slrtgetCC('Type')

type =

VisualC

Return compiler location

location = slrtgetCC('Location')

location =

C:\Program Files (x86)\Microsoft Visual Studio 10.0

Return compiler type and location

[type, location] = slrtgetCC

type =

VisualC

location =

C:\Program Files (x86)\Microsoft Visual Studio 10.0

Display supported compilers

slrtgetCC('supported')

 slrtgetCC

8-35

List of C++ Compilers supported by Simulink Real-Time:

Name Version Service

 Packs

Microsoft Visual C++ Compilers 2008 9.0 1

Microsoft Visual C++ Compilers 2010 10.0 1

Microsoft Visual C++ Compilers 2012 11.0

Microsoft Visual C++ Compilers (Windows SDK) 2010 10.0 1

Display supported compilers installed

slrtgetCC('installed')

List of installed C++ Compilers:

Name: Microsoft Visual C++ Compilers 2008 Professional Edition

 (SP1)

Location: c:\Program Files (x86)\Microsoft Visual Studio 9.0

Name: Microsoft Visual C++ Compilers 2010 Professional

Location: C:\Program Files (x86)\Microsoft Visual Studio 10.0

Return supported compilers installed

[compilers] = slrtgetCC('installed')

compilers(1)

compilers =

1x2 struct array with fields:

 Type

 Name

 Location

ans =

 Type: 'VisualC'

 Name: 'Microsoft Visual C++ Compilers 2008 Professional

 Edition (SP1)'

8 MATLAB API

8-36

 Location: 'c:\Program Files (x86)\Microsoft Visual Studio 9.0'

Output Arguments

type — Type of compiler
VisualC

Simulink Real-Time supports the Microsoft Visual Studio C compiler only.

location — Folder path to compiler on development computer
string

compilers — Array of structures containing compiler type, name, and location
array of structures

More About
• http://www.mathworks.com/support/compilers/current_release/

See Also
mex | slrtsetCC

http://www.mathworks.com/support/compilers/current_release/

 slrtpingtarget

8-37

slrtpingtarget
Test communication between development and target computers

Syntax
slrtpingtarget

slrtpingtarget target_computer_name

Description
Returns success if the Simulink Real-Time kernel is loaded and running, and
communication is working between the development and target computers. Otherwise,
returns failed.

slrtpingtarget without an argument returns success if the development computer
and the default target computer can communicate using the settings for that target
computer. Otherwise, returns failed.

slrtpingtarget target_computer_name returns success if the development
computer can communicate with target computer target_computer_name using the
settings for that target computer. Otherwise, returns failed.

Examples
Check communication with default target computer

slrtpingtarget

Check communication with specified target computer

slrtpingtarget TargetPC1

Input Arguments
target_computer_name — Name of specific target computer
TargetPC1 | TargetPC2 | ...

8 MATLAB API

8-38

Name property of a particular target computer environment object. The default name is
TargetPC1.

When using function form, enclose the argument in single quotes ('TargetPC1').

Example: TargetPC1

Data Types: char

 slrtsetCC

8-39

slrtsetCC
Compiler settings for development computer environment

Syntax

slrtsetCC setup

slrtsetCC 'type' 'location'

Description

slrtsetCC setup queries the development computer for installed C compilers
supported by the Simulink Real-Time environment. You can then select the C compiler.

The command mex -setup sets the default compiler for Simulink Real-Time
builds, provided the MEX compiler is a supported Microsoft compiler. Use
slrtsetCC('setup') only if you must specify different compilers for MEX and
Simulink Real-Time.

slrtsetCC 'type' 'location' sets the compiler type and location.

To return to the default MEX compiler from a setting by slrtsetCC, type slrtsetCC
'VisualC' '', setting the compiler location to the empty string.

Examples

Compiler selection

slrtsetCC setup

Select your compiler for Simulink Real-Time.

[1] Microsoft Visual C++ Compilers 2008 Professional Edition (SP1)

 in c:\Program Files (x86)\Microsoft Visual Studio 9.0

[2] Microsoft Visual C++ Compilers 2010 Professional

 in C:\Program Files (x86)\Microsoft Visual Studio 10.0

8 MATLAB API

8-40

[0] None

Compiler:2

Verify your selection:

Compiler: Microsoft Visual C++ Compilers 2010 Professional

Location: C:\Program Files (x86)\Microsoft Visual Studio 10.0

Are these correct [y]/n?y

Done...

Compiler specification

slrtsetCC 'VisualC',

 'C:\Program Files (x86)\Microsoft Visual Studio 10.0'

Input Arguments

type — Type of compiler
VisualC (default)

type must be VisualC, representing the Microsoft Visual Studio C compiler.

Example: 'VisualC'

Data Types: char

location — Folder path to compiler on development computer
string
Data Types: char

More About
• http://www.mathworks.com/support/compilers/current_release/

See Also
mex | slrtgetCC

http://www.mathworks.com/support/compilers/current_release/

 slrttest

8-41

slrttest
Test Simulink Real-Time installation

Syntax

slrttest

slrttest noreboot

slrttest target_name, ___

Description

slrttest is a confidence test that checks the following tasks:

• Initiate communication between the development and target computers.
• Restart the target computer to reset the target environment.
• Build a real-time application on the development computer.
• Download a real-time application to the target computer.
• Check communication between the development and target computers using

commands.
• Execute a real-time application.
• Compare the results of a simulation and the real-time application run.

slrttest noreboot skips the restart test on the default target computer. Use this
option if the target hardware does not support software restart.

slrttest target_name, ___ runs the tests on the target computer identified by
target_name.

Examples

Test default target computer

Target computer must be running and physically connected to the development
computer.

8 MATLAB API

8-42

slrttest

Test default target computer, skipping reboot test

Target computer must be running and physically connected to the development
computer.

slrttest noreboot

Test specified target computer, skipping reboot test

Target computer must be running and physically connected to the development
computer.

slrttest 'TargetPC1' noreboot

Input Arguments

target_name — Specifies target name
string

The target name string is case sensitive.
Example: 'TargetPC1'

More About
• “Troubleshooting in Simulink Real-Time”

 SimulinkRealTime.addTarget

8-43

SimulinkRealTime.addTarget
Add new Simulink Real-Time target object

Syntax

SimulinkRealTime.addTarget('target_name')

Description

SimulinkRealTime.addTarget('target_name') adds the definition for a new
target computer, represented by the name 'mytarget'. It returns an object of type
SimulinkRealTime.targetSettings corresponding to the new target computer.

Examples

Add a new Simulink Real-Time target object 'TargetPC2' to the system:
tg = SimulinkRealTime.addTarget('TargetPC2')

The tg variable contains the attributes of the new target computer.

See Also
SimulinkRealTime.getTargetSettings | SimulinkRealTime.removeTarget

8 MATLAB API

8-44

SimulinkRealTime.copyFileToHost
Copy file from target computer to development computer

Syntax

SimulinkRealTime.copyFileToHost(file_name)

SimulinkRealTime.copyFileToHost(target_obj,file_name)

Description

SimulinkRealTime.copyFileToHost(file_name) copies file file_name from the
default target computer to the development computer.

SimulinkRealTime.copyFileToHost(target_obj,file_name) copies file
file_name from the target computer represented by target_obj to the development
computer.

Examples

Copy File by Name from Default Target Computer

Copy file from current folder on default target computer.

SimulinkRealTime.copyFileToHost('data.dat')

Copy File by Full Path from Specified Target Computer

Copy file from full path location on target computer TargetPC1.

tg = slrt('TargetPC1');

SimulinkRealTime.copyFileToHost(tg,'c:\xpcosc\data1.dat')

Input Arguments

target_obj — Name of a target computer or a variable containing a target computer object
string | object

 SimulinkRealTime.copyFileToHost

8-45

If the argument is a string, it must be the name assigned to a previously configured
target computer.

If the argument is a variable containing an object, it must be a
SimulinkRealTime.target object representing a previously configured target
computer.
Example: ‘TargetPC1’

Example: tg

Data Types: char | struct

file_name — Name of a file on the target computer
file name string | full path name string

If the argument is a file name, the file must be in the current folder on the target
computer, as indicated by the function SimulinkFileSystem.pwd.

The file is transferred from the target and written with the same file name to the current
folder on the development computer.
Example: 'myFile.txt'

Example: 'c:\subDir\myFile.txt'

Data Types: char

See Also
SimulinkRealTime.copyFileToTarget | SimulinkRealTime.fileSystem.cd |
SimulinkRealTime.fileSystem.dir | SimulinkRealTime.fileSystem.pwd

8 MATLAB API

8-46

SimulinkRealTime.copyFileToTarget

Copy file from development computer to target computer

Syntax

SimulinkRealTime.copyFileToTarget(file_name)

SimulinkRealTime.copyFileToTarget(target_obj,file_name)

Description

SimulinkRealTime.copyFileToTarget(file_name) copies file file_name from the
development computer to the default target computer.

SimulinkRealTime.copyFileToTarget(target_obj,file_name) copies file
file_name from the development computer to the target computer represented by
target_obj.

Examples

Copy File to Default Target Computer Top Folder

Copy file from current folder on development computer to top folder on default target
computer.

SimulinkRealTime.copyFileToTarget('data.dat')

Copy File to Specified Target Computer by Full Path

Copy file from current folder on development computer to full path location on target
computer TargetPC1.

tg = slrt('TargetPC1');

 SimulinkRealTime.copyFileToTarget

8-47

SimulinkRealTime.copyFileToTarget(tg,'c:\xpcosc\data1.dat')

Input Arguments

target_obj — Name of a target computer or a variable containing a target computer object
string | object

If the argument is a string, the string must contain the name assigned to a previously
configured target computer.

If the argument is a variable containing an object, the object must be a
SimulinkRealTime.target object representing a previously configured target
computer.
Example: ‘TargetPC1’

Example: tg

Data Types: char | struct

file_name — Name of a file in the current folder on the development computer
file name string | full path name string

The file being copied must exist in the current folder on the development computer.

If the argument is a file name, the file is copied to the current folder on the target
computer, as indicated by the function SimulinkFileSystem.pwd.

If the argument is a path name, the file portion of the path name is extracted as the
development computer file name. The file is copied to the location indicated by the path
name. The folder must exist on the target computer.
Example: 'myFile.txt'

Example: 'c:\subDir\myFile.txt'

Data Types: char

See Also
SimulinkRealTime.copyFileToHost | SimulinkRealTime.fileSystem.cd |
SimulinkRealTime.fileSystem.dir | SimulinkRealTime.fileSystem.pwd

8 MATLAB API

8-48

SimulinkRealTime.createBootImage
Create Simulink Real-Time boot disk or DOS Loader files

Syntax

SimulinkRealTime.createBootImage

SimulinkRealTime.createBootImage(target_object)

Description

SimulinkRealTime.createBootImage creates a boot image for the default target
computer in the form of a boot floppy disk, a boot CD or DVD, a network boot image, or
DOS Loader kernel image files.

SimulinkRealTime.createBootImage(target_object)creates a boot image for
the target computer indicated by target_object, which can be the name of a target
computer or a variable containing a target object.

The form of the boot image depends upon the value of the TargetBoot environment
property.

• BootFloppy — To create a boot floppy disk, the software prompts you to insert an
empty formatted disk into the drive. The software writes the kernel image onto the
disk and displays a summary of the creation process.

• CDBoot — To create a CD or DVD boot disk, the software prompts you to insert an
empty formatted CD or DVD into the drive. The software writes the kernel image onto
the CD or DVD and displays a summary of the creation process.

• NetworkBoot — To create a network boot image, the software starts the network
boot server process.

• DOSLoader — To create DOS Loader files, the software writes kernel image and DOS
Loader files into a designated location on the development computer. You can then
copy the files to the target computer hard drive, to a floppy disk, or to a flash drive.

• StandAlone — To create files for a standalone application, you must
separately compile and download a combined kernel and real-time application.
SimulinkRealTime.createBootImage does not generate a standalone application.

 SimulinkRealTime.createBootImage

8-49

To update the TargetBoot environment property:

tg = SimulinkRealTime.getTargetSettings

tg.TargetBoot = new_value

If you update the environment, you must update the boot image with the function
SimulinkRealTime.createBootImage.

Examples

To create a boot image for the default target computer, in the Command Window, type:

SimulinkRealTime.createBootImage

To create a boot image for the target computer TargetPC1, type:

SimulinkRealTime.createBootImage('TargetPC1')

To create a boot image for target computer object target_object, type:

target_object = SimulinkRealTime.addTarget('TargetPC2');

SimulinkRealTime.createBootImage(target_object)

See Also
SimulinkRealTime.getTargetSettings

Related Examples
• “Target Boot Methods”
• “Command-Line Target Boot Methods”

8 MATLAB API

8-50

SimulinkRealTime.getSupportInfo
Diagnostic information to troubleshoot configuration issues

Syntax

SimulinkRealTime.getSupportInfo

SimulinkRealTime.getSupportInfo('-a')

Arguments

'-a' Appends diagnostic information to an existing
slrtinfo.txt file. If this file does not exist, this
function creates the file in the current folder. Enter the
argument as a string.

Description

SimulinkRealTime.getSupportInfo returns diagnostic information for
troubleshooting Simulink Real-Time configuration issues. This function generates
and saves the information in the slrtinfo.txt file, in the current folder. If the file
slrtinfo.txt already exists, this function overwrites it with the new information.

SimulinkRealTime.getSupportInfo('-a') appends the diagnostic information to
the slrtinfo.txt file, in the current folder. If the file slrtinfo.txt does not exist,
this function creates it.

You can send the file slrtinfo.txt to MathWorks support for evaluation and guidance.
To create this file, you must have write permission for the current folder.

Caution The file slrtinfo.txt can contain information sensitive to your organization.
Before sending this file to MathWorks, review the contents.

 SimulinkRealTime.getTargetSettings

8-51

SimulinkRealTime.getTargetSettings
Display specific target computer environment object

Syntax

SimulinkRealTime.getTargetSettings

SimulinkRealTime.getTargetSettings(env_object_name)

env = SimulinkRealTime.getTargetSettings(___)

Description

SimulinkRealTime.getTargetSettings displays the environment object
representing the default computer.

SimulinkRealTime.getTargetSettings(env_object_name) displays the
environment object representing a particular target computer.

env = SimulinkRealTime.getTargetSettings(___) returns the environment
object representing the target computer.

Examples

Display the default target environment object:
SimulinkRealTime.getTargetSettings

Simulink Real-Time Target Settings

 Name : TargetPC1

 TargetRAMSizeMB : Auto

 MaxModelSize : 1MB

 SecondaryIDE : off

 NonPentiumSupport : off

 MulticoreSupport : on

 LegacyMultiCoreConfig : off

 USBSupport : on

 ShowHardware : off

 EthernetIndex : 0

8 MATLAB API

8-52

 HostTargetComm : TcpIp

 TcpIpTargetAddress : 10.10.10.15

 TcpIpTargetPort : 22222

 TcpIpSubNetMask : 255.255.255.0

 TcpIpGateway : 10.10.10.100

 RS232HostPort : COM1

 RS232Baudrate : 115200

 TcpIpTargetDriver : Auto

 TcpIpTargetBusType : PCI

 TcpIpTargetISAMemPort : 0x300

 TcpIpTargetISAIRQ : 5

 TargetScope : Enabled

 TargetBoot : NetworkBoot

 TargetMACAddress : 90:e2:ba:17:5d:15

Retrieve a target environment object for a specific target computer. Use it to access a
property:
env = SimulinkRealTime.getTargetSettings('TargetPC1');

value = env.HostTargetComm

 SimulinkRealTime.pingTarget

8-53

SimulinkRealTime.pingTarget

Test communication between development and target computers

Syntax

SimulinkRealTime.pingTarget

SimulinkRealTime.pingTarget(target_computer_name)

Description

Returns success if the Simulink Real-Time kernel is loaded and running, and
communication is working between the development and target computers. Otherwise,
returns failed.

SimulinkRealTime.pingTarget without an argument returns success if the
development computer and the default target computer can communicate using the
settings for the default computer. Otherwise, returns failed.

SimulinkRealTime.pingTarget(target_computer_name) returns success if the
development computer can communicate with target computer target_computer_name
using the settings for target computer target_computer_name. Otherwise, returns
failed.

Enclose the argument in single quotes ('TargetPC1').

8 MATLAB API

8-54

Examples

Check communication with default target computer

SimulinkRealTime.pingTarget

Check communication with specified target computer

SimulinkRealTime.pingTarget('TargetPC1')

Input Arguments

target_computer_name — Name of specific target computer
'TargetPC1' | 'TargetPC2' | ...

Name property of a particular target computer environment object. The default name is
'TargetPC1'.

Example: TargetPC1

Data Types: char

 SimulinkRealTime.removeTarget

8-55

SimulinkRealTime.removeTarget
Remove environment data associated with target name

Syntax

SimulinkRealTime.removeTarget('target_name')

Description

SimulinkRealTime.removeTarget('target_name') removes the definitions and
settings for the target computer represented by 'target_name' from the system. The
target objects associated with that target become invalid. If you remove the environment
data for the default target computer, the next target object becomes the default target
computer. Do not remove the environment data for the last target computer.

Examples

Remove the environment data for 'TargetPC2' from the system:
SimulinkRealTime.removeTarget('TargetPC2')

See Also
SimulinkRealTime.addTarget | SimulinkRealTime.getTargetSettings

8 MATLAB API

8-56

SimulinkRealTime.utils.bytes2file

Generate file for use by real-time From File block

Syntax

SimulinkRealTime.utils.bytes2file(filename,var1,. . .,varn)

Arguments

filename Name of the data file from which the real-time From File block
distributes data.

var1,. . .,varn Column of data to be output to the model.

Description

SimulinkRealTime.utils.bytes2file(filename,var1,. . .,varn) outputs
one column of var1, . . .,varn from file filename at every time step. All variables
must have the same number of columns. The number of rows and the data types can be
different.

Note: If the data is organized so that a row, not a column, refers to a time step, pass the
transpose of the variable to SimulinkRealTime.utils.bytes2file. To optimize file
writes, organize the data in columns.

Examples

To use the real-time From File block to output a variable errorval (single precision,
scalar) and velocity (double, width 3) at every time step, you can generate the file with
the command:

SimulinkRealTime.utils.bytes2file('myfile', errorval, velocity)

 SimulinkRealTime.utils.bytes2file

8-57

errorval has class 'single' and dimensions [1 x N] and velocity has class
'double' and dimensions [3 x N].

Set up the real-time From File block to output the following number of bytes at every
sample time:

28 bytes

(1 * sizeof('single') + 3 * sizeof('double'))

8 MATLAB API

8-58

SimulinkRealTime.utils.createInstrumentationModel
Construct skeleton for user interface model

Syntax

SimulinkRealTime.utils.createInstrumentationModel(system_name)

Description

SimulinkRealTime.utils.createInstrumentationModel(system_name)

generates a skeleton Simulink instrumentation model containing To Target and From
Target blocks. The model is based on tagged block parameters and tagged signals
defined in the Simulink Real-Time model used to build the real-time application.

Examples

Generate an interface model

SimulinkRealTime.utils.createInstrumentationModel('xpcosc')

Input Arguments

system_name — Name of system for which to create an interface model
'xpcosc'

Model must contain tagged signals or block parameters.
Data Types: char

 SimulinkRealTime.utils.getFileScopeData

8-59

SimulinkRealTime.utils.getFileScopeData
Read real-time Scope file format data

Syntax

matlab_data = SimulinkRealTime.utils.getFileScopeData(slrtfile_name)

matlab_data = SimulinkRealTime.utils.getFileScopeData(slrtfile_data)

Description

matlab_data = SimulinkRealTime.utils.getFileScopeData(slrtfile_name)

takes as an argument the name of a development computer file containing a vector of
byte data (uint8). Before using this function, copy the file from the target computer
using the SimulinkRealTime.copyFileToHost method.

matlab_data = SimulinkRealTime.utils.getFileScopeData(slrtfile_data)

takes as an argument a MATLAB variable containing a vector of byte data (uint8).
Before using this function, load the data into memory from a file on the target file system
using the SimulinkRealTime.fileSystem.fread method.

Examples

Using slrtfile_name argument to read file and plot results

Upload file 'data.dat' to the host. Read the file on the host. Plot the results.

Upload file 'data.dat' from the target computer to the development computer.

SimulinkRealTime.copyFileToHost('data.dat')

Read the file and process its data into MATLAB format.

matlab_data = SimulinkRealTime.utils.getFileScopeData('data.dat');

Plot the signal data (column 1) on the Y axis against time (column 2) on the X axis.

8 MATLAB API

8-60

plot(matlab_data.data(:,2), matlab_data.data(:,1))

xlabel(matlab_data.signalNames(2))

ylabel(matlab_data.signalNames(1))

Using slrtfile_data argument to store data, convert data to MATLAB format, and plot
results

Read file 'data.dat' on the target computer from the host. Store the data in a
MATLAB workspace variable. Convert the data to MATLAB format. Plot the results.

Read file 'data.dat' from the development computer using file system commands.

fs = SimulinkRealTime.fileSystem;

h = fopen(fs, 'data.dat');

slrtfile_data = fread(fs, h);

fclose(fs,h)

Process data from the workspace variable into MATLAB format.

matlab_data =

 SimulinkRealTime.utils.getFileScopeData(slrtfile_data);

Plot the signal data (column 1) on the Y axis against time (column 2) on the X axis.

plot(matlab_data.data(:,2), matlab_data.data(:,1))

xlabel(matlab_data.signalNames(2))

ylabel(matlab_data.signalNames(1))

Input Arguments

slrtfile_name — Name of file from which to read real-time Scope file format data
'data.dat'

File must contain a vector of uint8 data.

Data Types: char

slrtfile_data — Workspace variable containing real-time Scope file format data
vector
Data Types: uint8

 SimulinkRealTime.utils.getFileScopeData

8-61

Output Arguments

matlab_data — State and time data for plotting
structure

The state and time data is stored in a structure containing six fields. The key fields are
numSignals, data, and signalNames.

version — Version code
0 (default) | double

Internal

sector — Sector of data file
0 (default) | double

Internal

headersize — Number of bytes of data file header
512 (default) | double

Internal

numSignals — Number of columns containing signal and time data
double

If N signals are connected to the real-time Scope block, numSignals = N + 1.

data — Columns containing signal and time data
double array

The data array contains numSignals columns. The first N columns represent signal state
data. The last column contains the time at which the state data is captured.

The data array contains as many rows as there are data points.

signalNames — Names of columns containing signal and time data
cell vector

The signalNames vector contains numSignals elements. The first N elements are signal
names. The last element is the string Time.

8 MATLAB API

8-62

See Also
Scope | SimulinkRealTime.copyFileToHost | SimulinkRealTime.fileSystem

 Target Settings Properties

8-63

Target Settings Properties
Store settings related to target computer

This object defines the settings for the target computer.

The settings define the properties of the communication link between the development
and target computers and the properties of the target boot image created during the
setup process.

To create a new target computer settings object, use the syntax target_object =
SimulinkRealTime.addTarget(target_name).

target_object = SimulinkRealTime.addTarget('TargetPC1')

Simulink Real-Time Target Settings

 Name : TargetPC1

 TargetRAMSizeMB : Auto

 MaxModelSize : 1MB

 SecondaryIDE : off

 NonPentiumSupport : off

 MulticoreSupport : off

 LegacyMultiCoreConfig : off

 USBSupport : on

 ShowHardware : off

 EthernetIndex : 0

 HostTargetComm : TcpIp

 TcpIpTargetAddress :

 TcpIpTargetPort : 22222

 TcpIpSubNetMask : 255.255.255.0

 TcpIpGateway : 255.255.255.255

 RS232HostPort : COM1

 RS232Baudrate : 115200

 TcpIpTargetDriver : Auto

 TcpIpTargetBusType : PCI

 TcpIpTargetISAMemPort : 0x300

 TcpIpTargetISAIRQ : 5

 TargetScope : Enabled

8 MATLAB API

8-64

 TargetBoot : BootFloppy

 BootFloppyLocation :

To read existing target computer settings, use the syntax value =
target_object.property_name.

target_object = SimulinkRealTime.getTargetSettings('TargetPC1');

value = target_object.HostTargetComm

value =

TcpIp

To change an existing setting by assignment, use the syntax
target_object.property_name = value.

target_object = SimulinkRealTime.getTargetSettings('TargetPC1');

target_object.HostTargetComm = 'RS232';

value = target_object.HostTargetComm

value =

RS232

To mark a target computer as the default computer, use the syntax
setAsDefaultTarget(target_object).

target_object = SimulinkRealTime.getTargetSettings('TargetPC1');

setAsDefaultTarget(target_object)

To access the target computer settings in Simulink Real-Time Explorer:

1 In the Targets pane, expand a target computer node.
2 In the toolbar, click the Target Properties icon .
3 Expand the sections Host-to-Target communication, Target settings, or Boot

configuration.

Host-to-Target Communication

HostTargetComm — Type of link between development and target computers
'TcpIp' (default) | 'RS232'

 Target Settings Properties

8-65

Use 'TcpIp' if you have a dedicated Ethernet card installed in both the development
and target computers. Use 'RS232' if you have a dedicated COM port in both the
development and target computers.

Note: RS-232 communication type will be removed in a future release. Use TCP/IP
instead.

In the Simulink Real-Time Explorer Communication type list, select one of RS-232 or
TCP/IP.

If you select RS-232, you must also set the property RS232HostPort. If you select TCP/
IP, then you must set the other properties that start with TcpIp.

Example: env_object.HostTargetComm = 'RS232'

RS232Baudrate — Serial link transmission rate
'115200' (default) | '57600' | '38400' | '19200' | '9600' | '4800 | '2400' |
'1200'

In the Simulink Real-Time Explorer Baud rate list, select one of 1200, 2400, 4800,
9600, 19200, 38400, 57600, or 115200.

Before you can select a baud rate, you must set the HostTargetComm property to RS232.

Example: env_object.RS232Baudrate = '57600'

RS232HostPort — Serial link COM port on development computer
'COM1' (default) | 'COM2'

Selects serial port on development computer only. The software determines the COM
port on the target computer.

In the Simulink Real-Time Explorer Host port list, select one of COM1 or COM2.

Before you can select an RS-232 port, you must set the HostTargetComm property to
RS232.

Example: env_object.RS232HostPort = 'COM2'

TcpIpGateway — IP address for gateway to Ethernet link
'255.255.255.255' (default) | 'xxx.xxx.xxx.xxx'

8 MATLAB API

8-66

If you communicate with your target computer from within a LAN that uses gateways,
and your development and target computers are connected through a gateway, you must
enter a value for this property.

The default value, 255.255.255.255, means that a gateway is not used to connect to
the target computer. If your LAN does not use gateways, you do not need to change this
property. Consult your system administrator for this value.

In the Simulink Real-Time Explorer Gateway box, type the IP address for your gateway.
Example: env_object.TcpIpGateway = '192.168.1.1'

TcpIpSubNetMask — Subnet mask for gateway to Ethernet link
'xxx.xxx.xxx.xxx'

In the Simulink Real-Time Explorer Subnet mask box, type the subnet mask of your
LAN. Consult your system administrator for this value.
Example: env_object.TcpIpSubNetMask = '255.255.255.0'

TcpIpTargetAddress — IP address for target computer
'xxx.xxx.xxx.xxx'

In the Simulink Real-Time Explorer IP address box, type a valid IP address for your
target computer. Consult your system administrator for this value.
Example: env_object.TcpIpTargetAddress = '192.168.1.10'

TcpIpTargetBusType — Bus type for Ethernet card on target computer
'PCI' (default) | 'ISA' | 'USB'

This property determines the bus type of your target computer. You do not need to define
a bus type for your development computer.

If TcpIpTargetBusType is set to PCI, then the properties TcpIpISAMemPort and
TcpIpISAIRQ are not used for TCP/IP communication.

If you are using an ISA bus card, set TcpIpTargetBusType to ISA and enter values for
TcpIpISAMemPort and TcpIpISAIRQ.

In the Simulink Real-Time Explorer Bus type list, select one of PCI, ISA, or USB.

Example: env_object.TcpIpTargetBusType = 'USB'

 Target Settings Properties

8-67

TcpIpTargetDriver — Driver for Ethernet card on target computer
'Auto' (default) | '3C90x' | 'I8254x' | 'I82559' | 'NE2000' | 'NS83815'
| 'R8139' | 'R8168' | 'Rhine' | 'RTLANCE' | 'SMC91C9X' | 'USBAX772' |
'USBAX172'

Use the default value ('Auto') if the target computer contains only one supported
Ethernet card.

Use 'USBAX772' or 'USBAX172' if you are using bus type 'USB'.

In the Simulink Real-Time Explorer Target driver list, select one of THREECOM_3C90x,
INTEL_I8254x, INTEL_I82559, NE2000, NS83815, R8139, R8168, Rhine, RTLANCE,
SMC91C9X, USBAX772, USBAX172, or Auto.

Example: env_object.TcpIpTargetDriver = 'USBAX172'

TcpIpTargetISAIRQ — IRQ for Ethernet card on ISA bus target computer
'5' (default) | 'N' | '15'

IRQ values run from '5' to '15', inclusive.

If you are using an ISA bus Ethernet card, you must enter a value for TcpIpISAIRQ. The
value must correspond to the jumper or ROM settings on the ISA bus Ethernet card.

On your ISA bus card, assign an IRQ by moving the jumpers on the card. Set the IRQ to
5, 10, or 11. If one of these hardware settings leads to a conflict in your target computer,
choose another IRQ and make the corresponding changes to your jumper settings.

From the Simulink Real-Time Explorer IRQ list, select an IRQ value.
Example: env_object.TcpIpTargetISAIRQ = '11'

TcpIpTargetISAMemPort — IRQ base address for Ethernet card on ISA bus target computer
0xNNNN

If you are using an ISA bus Ethernet card, you must enter a value for the property
TcpIpISAMemPort. The value of this property must correspond to the jumper or ROM
settings on your ISA bus Ethernet card.

On your ISA bus card, assign an II/O port base address by moving the jumpers on the
card. Set the I/O port base address to a value near 0x300. If one of these hardware
settings leads to a conflict in your target computer, choose another I/O port base address
and make the corresponding changes to your jumper settings.

8 MATLAB API

8-68

In the Simulink Real-Time Explorer Address box, type an I/O port base address.
Example: env_object.TcpIpTargetISAMemPort = '0x400'

TcpIpTargetPort — Ethernet port on target computer
'22222'. (default) | 'xxxxx'

Use an Ethernet port address greater than '20000'. Values in this range are higher
than the reserved area (telnet, ftp, . . .). This address is used only on the target
computer.

You typically do not change this value from the default. You should only do so if you are
using the default port ('22222') for other purposes.

Example: env_object.TcpIpTargetPort = '24000'

Target settings

EthernetIndex — Index number of Ethernet card on target computer
'0' (default) | 'n'

Unique number identifying an Ethernet card on the target computer. If the target
computer has multiple Ethernet cards, you must select one of the cards for the Ethernet
link. This option returns the index number of the card selected on the target computer
upon starting.

The (n-1)th Ethernet card on the target computer has an index number 'n'.

Example: env_object.EthernetIndex = '2'

LegacyMultiCoreConfig — Target computer contains legacy hardware
'off' (default) | 'on'

Set this value to 'on' only if your target computer contains hardware not compliant with
the Advanced Configuration and Power Interface (ACPI) standard. Otherwise, leave this
value set to 'off'.

Example: env_object.LegacyMultiCoreConfig = 'on'

MaxModelSize — Maximum expected size of real-time application
'1MB' (default) | '4MB'

 Target Settings Properties

8-69

The maximum model size reserves the specified amount of memory on the target
computer for the real-time application. Memory not used by the real-time application is
used by the kernel and by the heap for data logging.

Selecting too high a value leaves less memory for data logging. Selecting too low a value
does not reserve enough memory for the real-time application and creates an error. You
can approximate the size of the real-time application by the size of the DLM file produced
by the build process.

In the Simulink Real-Time Explorer Model size list, select one of 1 MB or 4 MB.

Setting Model size is enabled for Boot mode Stand Alone only. Value '16MB' is not
supported.
Example: env_object.MaxModelSize = '4MB'

MulticoreSupport — Enable use of multicore processors
'off' (default) | 'on'

Use multicore support only for a multicore target computer.

In the Simulink Real-Time Explorer , select the Multicore CPU check box to take
advantage of these processors for background tasks. Otherwise, clear it.
Example: env_object.MulticoreSupport = 'on'

Name — Target computer name string
'TargetPCN' (default) | string

When you create a new target settings object, the software assigns it a name of the form
'TargetPCN+1', where 'TargetPCN' is the previously assigned name. You can assign
a new name from the Command Window.

To rename the target computer in Simulink Real-Time Explorer, right-click the target
computer node in the MATLAB Session tree, click Rename, and type the new name in
the Target environment name box.
Example: env_object.Name = 'NewTarget'

NonPentiumSupport — Target computer contains legacy processor
'off' (default) | 'on'

Set only if your target computer has a 386 or 486 compatible processor. If your target
computer has a Pentium or higher compatible processor, selecting this check box slows
the performance of your target computer.

8 MATLAB API

8-70

If your target computer has a 386 or 486 compatible processor, select the Simulink Real-
Time Explorer Target is a 386/486 check box. Otherwise, clear it.
Example: env_object.NonPentiumSupport = 'on'

SecondaryIDE — Enable secondary IDE disk controller
'off' (default) | 'on'

Set only if you want to use disks connected to a secondary IDE controller.

To set this parameter in Simulink Real-Time Explorer, select the Secondary IDE check
box. Otherwise, clear it.
Example: env_object.SecondaryIDE = 'on'

ShowHardware — Display Ethernet card information for target computer
'off' (default) | 'on'

If you create a target boot kernel when ShowHardware is 'on' and start the target
computer with it, the kernel displays the index, bus, slot, function, and target driver for
each Ethernet card on the target monitor.

The development computer cannot communicate with the target computer after
the kernel starts with ShowHardware set. When you are done gathering the
information provided by the kernel on when you start the target computer with
ShowHardware='on', you must set this property to 'off', recreate the boot image, and
restart the target computer to resume normal functionality.
Example: env_object.ShowHardware = 'on'

TargetRAMSizeMB — Megabytes of RAM installed in target computer
'Auto' (default) | 'xxx'

Specifies the total amount of RAM, in megabytes, installed on the target computer.
Target computer RAM is used for the kernel, real-time application, data logging, and
other functions that use the heap.

If this property is set to 'Auto', the real-time application reads the target computer
BIOS and determines the amount of memory up to a maximum of 2 GB.

To allow the real-time application to determine the amount of memory in Simulink
Real-Time Explorer, click RAM size Auto. If the real-time application cannot read the
BIOS, click Manual and type into the Size(MB) box the amount of RAM, in megabytes,
installed on the target computer.

 Target Settings Properties

8-71

The Simulink Real-Time kernel can use only 2 GB of memory.
Example: env_object.ShowHardware = '2000'

TargetScope — Display scope information graphically
'Enabled' (default) | 'Disabled'

When this property is set to 'Enabled', the target computer shows a graphical
windowed display. When set to 'Disabled', the target computer shows a text-based
view.

When the graphical display is present, you can use target scopes to view signal data
graphically on the target display. You cannot do this when the text-based view is present.

Using Simulink Real-Time Explorer, to display scope information graphically, set the
Graphics mode check box.

To display scope information as text, clear the Graphics mode check box.

To use the full features of a target scope, install a keyboard on the target computer.
Example: env_object.TargetScope = 'Disabled'

USBSupport — Enable USB port on target computer
'on' (default) | 'off'

Set this property to use a USB port on the target computer, for example to connect a USB
mouse.

In Simulink Real-Time Explorer, to enable a USB port, select the USB Support check
box. Otherwise, clear it.
Example: env_object.USBSupport = 'off'

Boot configuration

BootFloppyLocation — Drive name for creation of target boot disk
string

Set this property if you need to create a removable boot disk and the system default drive
does not work.
Example: env_object.BootFloppyLocation='D:\'

8 MATLAB API

8-72

DOSLoaderLocation — Location of DOS Loader files to start target computers from devices
other than floppy disk or CD
string

Set this property in DOS Loader mode if the default location does not work.
Example: env_object.DOSLoaderLocation='D:\Dosloader'

TargetBoot — Mode of restarting target computer
'BootFloppy' (default) | 'CDBoot' | 'DOSLoader' | 'NetworkBoot' |
'StandAlone'

After making the required target settings, to create a bootable image, type
SimulinkRealTime.createTargetImage.

In Simulink Real-Time Explorer, to create a bootable image for the specified boot mode,
click Create boot disk.
Example: env_object.TargetBoot='NetworkBoot'

TargetMACAddress — Target computer MAC address for network restart
'xx:xx:xx:xx:xx:xx'

Physical target computer MAC address from which to accept start requests when
starting within a dedicated network.

To update the MAC address in Simulink Real-Time Explorer, first click the Reset button
in the Target Properties pane. You can then click the Specify new MAC address
button to enter a MAC address manually in the MAC address box. If you do not enter
a MAC address manually, the software will obtain the MAC address automatically the
next time you restart the target computer.
Example: env_object.TargetMACAddress='90:e2:ba:17:5d:15'

See Also
SimulinkRealTime.addTarget | SimulinkRealTime.getTargetSettings |
SimulinkRealTime.targetSettings.setAsDefaultTarget

Related Examples
• “Ethernet Link Setup”
• “Serial Link Setup”

 Target Settings Properties

8-73

• “Target Computer Settings”
• “Target Boot Methods”

8 MATLAB API

8-74

SimulinkRealTime.targetSettings.setAsDefaultTarget
Set specific target computer environment object as default

Syntax

setAsDefaultTarget(target_object)

Description

setAsDefaultTarget(target_object) sets the specified target computer as the
default target computer from the SimulinkRealTime.target class.

Examples

Set target computer 'TargetPC1' as the default target computer:
target_object = SimulinkRealTime.getTargetSettings('TargetPC1');

setAsDefaultTarget(target_object)

 SimulinkRealTime.fileSystem

8-75

SimulinkRealTime.fileSystem
Manage folders and files on target computer

Description

This class implements folder and file access methods used on the target computer.

Constructor

Constructor Description

SimulinkRealTime.fileSystem

(constructor)

Create file system object

Methods

Method Description

SimulinkRealTime.fileSystem.cdChange folder on target computer
SimulinkRealTime.fileSystem.dirList contents of current folder on target computer
SimulinkRealTime.fileSystem.diskinfoInformation about target computer drive
SimulinkRealTime.fileSystem.fcloseClose open target computer file or files
SimulinkRealTime.fileSystem.fileinfoTarget computer file information
SimulinkRealTime.fileSystem.filetableInformation about open files in target computer file system
SimulinkRealTime.fileSystem.fopenOpen target computer file for reading
SimulinkRealTime.fileSystem.freadRead open target computer file
SimulinkRealTime.fileSystem.fwriteWrite binary data to open target computer file
SimulinkRealTime.fileSystem.getfilesizeSize of file on target computer
SimulinkRealTime.fileSystem.mkdirMake folder on target computer
SimulinkRealTime.fileSystem.pwdCurrent folder path of target computer
SimulinkRealTime.fileSystem.removefileRemove file from target computer
SimulinkRealTime.fileSystem.rmdirRemove folder from target computer

8 MATLAB API

8-76

SimulinkRealTime.fileSystem (constructor)
Create Simulink Real-Time file system object

Syntax

filesys_object = SimulinkRealTime.fileSystem

filesys_object = SimulinkRealTime.fileSystem(target_object)

Arguments

filesys_object Variable name to reference the file
system object.

target_object Variable name to reference the
target object.

Description

Constructor of a SimulinkRealTime.fileSystem object. The file system object represents
the target computer file system. You work with the target computer file system from the
development computer using file system methods.

filesys_object = SimulinkRealTime.fileSystem returns the file system object
corresponding to the default target. Use this form if you have one target computer or if
you designate a target computer as the default one in your system.

filesys_object = SimulinkRealTime.fileSystem(target_object) returns the
file system object corresponding to the target computer accessible by target_object.

Examples

Create a file system object for the default target computer:

fsys = SimulinkRealTime.fileSystem

 SimulinkRealTime.fileSystem (constructor)

8-77

If you have a SimulinkRealTime.target object, you can construct a
SimulinkRealTime.fileSystem object by passing the SimulinkRealTime.target
object variable to the SimulinkRealTime.fileSystem constructor as an argument:

tg = SimulinkRealTime.target('TargetPC1');

fsys = SimulinkRealTime.fileSystem(tg)

See Also
SimulinkRealTime.fileSystem

8 MATLAB API

8-78

SimulinkRealTime.fileSystem.cd
Change folder on target computer

Syntax

cd(file_obj, target_computer_dir)

Arguments

file_obj Name of the SimulinkRealTime.fileSystem object.
target_computer_dirName of the target computer folder to change.

Description

From the development computer, cd(file_obj, target_computer_dir) changes the
currently active folder on the target computer.

Examples

For the file system object fsys, change the folder from the current one to one named
'logs':

tg = slrt;

fsys = SimulinkRealTime.fileSystem(tg);

cd(fsys,'logs')

See Also
cd | SimulinkRealTime.fileSystem.mkdir |
SimulinkRealTime.fileSystem.pwd

 SimulinkRealTime.fileSystem.dir

8-79

SimulinkRealTime.fileSystem.dir
List contents of current folder on target computer

Syntax

dir(file_obj)

dir(file_obj,folder_name)

return_value = dir(file_obj, ___)

Arguments

file_obj Handle of the file system object.
folder_name Name of a folder on the target computer.
return_value Struct array returned from the

SimulinkRealTime.fileSystem object, consisting of the
following fields:

• date — The last date at which the object was saved.
• time — The last time at which the object was saved.
• isdir — If 1, the object is a folder. If 0, it is not a folder.
• bytes — Size in bytes of that object.
• name — Name of an object in the folder, shown as a cell

array. The name, stored in the first element of the cell array,
can have up to eight characters. The three-character file
extension is stored in the second element of the cell array.

Description

From the development computer, dir(file_obj) lists the contents of the currently
active folder on the target computer.

From the development computer, dir(file_obj,folder_name) lists the contents of
the folder folder_name on the target computer.

8 MATLAB API

8-80

return_value = dir(file_obj, ___) returns the results in an M-by-1 structure.

Examples

List the contents of the currently active folder for the file system object fsys:

tg = slrt;

fsys = SimulinkRealTime.fileSystem(tg);

dir(fsys)

4/12/1998 20:00 222390 IO SYS

 11/2/2003 13:54 6 MSDOS SYS

 11/5/1998 20:01 93880 COMMAND COM

 11/2/2003 13:54 <DIR> 0 TEMP

 11/2/2003 14:00 33 AUTOEXEC BAT

 11/2/2003 14:00 512 BOOTSECT DOS

 18/2/2003 16:33 4512 SC1SIGNA DAT

 18/2/2003 16:17 <DIR> 0 FOUND 000

 29/3/2003 19:19 8512 DATA DAT

 28/3/2003 16:41 8512 DATADATA DAT

 28/3/2003 16:29 4512 SC4INTEG DAT

 1/4/2003 9:28 201326592 PAGEFILE SYS

 11/2/2003 14:13 <DIR> 0 WINNT

 4/5/2001 13:05 214432 NTLDR '

 4/5/2001 13:05 34468 NTDETECT COM

 11/2/2003 14:15 <DIR> 0 DRIVERS

 22/1/2001 11:42 217 BOOT INI'

 28/3/2003 16:41 8512 A DAT

 29/3/2003 19:19 2512 SC3SIGNA DAT

 11/2/2003 14:25 <DIR> 0 INETPUB

 11/2/2003 14:28 0 CONFIG SYS

 29/3/2003 19:10 2512 SC3INTEG DAT

 1/4/2003 18:05 2512 SC1GAIN DAT

 11/2/2003 17:26 <DIR> 0 UTILIT~1

You must use the dir(f) syntax to list the contents of the folder.

Return the contents of the DOS directory as a struct array:

return_value = dir(file_obj,'DOS')

return_value =

 SimulinkRealTime.fileSystem.dir

8-81

1x12 struct array with fields:

 date

 time

 isdir

 bytes

 name

See Also
dir | SimulinkRealTime.fileSystem.mkdir |
SimulinkRealTime.fileSystem.cd | SimulinkRealTime.fileSystem.pwd

8 MATLAB API

8-82

SimulinkRealTime.fileSystem.diskinfo
Target computer drive configuration information

Syntax

return_value = diskinfo(filesys_obj,target_computer_drive)

Arguments

filesys_obj Name of the SimulinkRealTime.fileSystem file system
object.

target_computer_driveName of the target computer drive being accessed.

Description

return_value = diskinfo(filesys_obj,target_computer_drive) is called from
the development computer and returns configuration information for the specified drive
on the target computer.

Examples

For file system object fsys, return configuration information for the target computer C:\
drive:

tg = slrt;

fsys = SimulinkRealTime.fileSystem(tg);

diskinfo(fsys,'C:\')

ans =

 Label: 'SYSTEM '

 DriveLetter: 'C'

 Reserved: ''

 SerialNumber: 1.0294e+009

 SimulinkRealTime.fileSystem.diskinfo

8-83

 FirstPhysicalSector: 63

 FATType: 32

 FATCount: 2

 MaxDirEntries: 0

 BytesPerSector: 512

 SectorsPerCluster: 4

 TotalClusters: 2040293

 BadClusters: 0

 FreeClusters: 1007937

 Files: 19968

 FileChains: 22480

 FreeChains: 1300

 LargestFreeChain: 64349

8 MATLAB API

8-84

SimulinkRealTime.fileSystem.fclose

Close target computer file

Syntax

fclose(filesys_obj,file_id)

Arguments

filesys_obj Name of the SimulinkRealTime.fileSystem file system
object

file_id File identifier of the file to close

Description

From the development computer, fclose(filesys_obj,file_id) closes one or more
open files in the target computer file system (except standard input, output, and error).
The file_id argument is the file identifier associated with an open file. You cannot
have more than eight files open at the same time in the file system.

Examples

Close the open file identified by the file identifier h in the file system object fsys:

tg = slrt;

fsys = SimulinkRealTime.fileSystem(tg);

h = fopen(fsys, 'data.dat', 'w');

fwrite(fsys, h, 'test')

fclose(fsys, h)

h = fopen(fsys, 'data.dat', 'r');

value = fread(fsys, h);

char(value)

 SimulinkRealTime.fileSystem.fclose

8-85

See Also
fclose | SimulinkRealTime.fileSystem.fopen
| SimulinkRealTime.fileSystem.fread |
SimulinkRealTime.fileSystem.filetable |
SimulinkRealTime.fileSystem.fwrite

8 MATLAB API

8-86

SimulinkRealTime.fileSystem.fileinfo
Target computer file configuration information

Syntax

return_value = fileinfo(filesys_obj,file_id)

Arguments

filesys_obj Name of the SimulinkRealTime.fileSystem file system
object.

file_id Identifier of the file for which to get file configuration
information.

Description

From the development computer, return_value =
fileinfo(filesys_obj,file_id) gets file configuration information for the file on
the target computer associated with file_id.

Examples

Return file configuration information for the target computer file associated with the file
identifier h in the file system object fsys:

tg = slrt;

fsys = SimulinkRealTime.fileSystem(tg);

h = fopen(fsys, 'data.dat', 'r');

fileinfo(fsys,h)

ans =

 FilePos: 0

 AllocatedSize: 32768

 SimulinkRealTime.fileSystem.fileinfo

8-87

 ClusterChains: 1

 VolumeSerialNumber: 1082284597

 FulName: 'C:\data.dat'

8 MATLAB API

8-88

SimulinkRealTime.fileSystem.filetable
Information about open files in target computer file system

Syntax

return_value = filetable(filesys_obj,file_id)

Arguments

filesys_obj Name of the SimulinkRealTime.fileSystem file system
object.

Description

Method of SimulinkRealTime.fileSystem objects. From the development computer,
return_value = filetable(filesys_obj,file_id) returns a table of the open
files in the target computer file system. You cannot have more than eight files open at
the same time in the file system.

Examples

Return a table of the open files in the target computer file system for the file system
object fsys:

tg = slrt;

fsys = SimulinkRealTime.fileSystem(tg);

filetable(fsys)

ans =

Index Handle Flags FilePos Name

--

 0 00060000 R__ 8512 C:\DATA.DAT

 1 00080001 R__ 0 C:\DATA1.DAT

 2 000A0002 R__ 8512 C:\DATA2.DAT

 SimulinkRealTime.fileSystem.filetable

8-89

 3 000C0003 R__ 8512 C:\DATA3.DAT

 4 001E000S R__ 0 C:\DATA4.DAT

The table returns the open file handles in hexadecimal. To convert a hexadecimal handle
to a handle that other SimulinkRealTime.fileSystem methods can use, use the
MATLAB hex2dec function:

h1 = hex2dec('001E0001'))

h1 =

1966081

To close that file, use SimulinkRealTime.fileSystem.fclose.

fclose(fsys,h1);

See Also
SimulinkRealTime.fileSystem.fopen |
SimulinkRealTime.fileSystem.fclose | hex2dec

8 MATLAB API

8-90

SimulinkRealTime.fileSystem.fopen

Open target computer file for reading

Syntax

file_id = fopen(file_obj, file_name)

file_id = fopen(file_obj, file_name, permission)

Arguments

file_obj Name of the SimulinkRealTime.fileSystem object.
file_name Name of the target computer to open, in single quotes
permission Permission values, one of 'r', 'w', 'a', 'r+', 'w+', or 'a+'.
file_id Identifier for newly-opened file.

The permission values have the following meaning.:

• 'r' — Open the file for reading (default). If the file does not already exist, the method
does not do anything.

• 'w' — Open the file for writing. If the file does not already exist, the method creates
the file.

• 'a' — Open the file for appending to it. Initially, the file pointer is at the end of the
file. If the file does not already exist, the method creates the file.

• 'r+' — Open the file for reading and writing. Initially, the file pointer is at the
beginning of the file. If the file does not already exist, the method does not do
anything.

• 'w+' — Open the file for reading and writing. If the file exists, the method empties
the file and places the file pointer at the beginning of the file. If the file does not
already exist, the method creates the file.

• 'a+' — Open the file for reading and appending to the file. Initially, the file pointer is
at the end of the file. If the file does not already exist, the method creates the file.

 SimulinkRealTime.fileSystem.fopen

8-91

Description

From the development computer, file_id = fopen(file_obj, file_name) opens
the specified file name on the target computer for reading binary data.

file_id = fopen(file_obj, file_name, permission) opens the specified file
name on the target computer for reading binary data.

You cannot have more than eight files open at the same time in the file system. This
method returns the file identifier for the open file in file_id. You use file_id as the
first argument to the other file I/O methods (such as fclose, fread, and fwrite).

Examples

Open the file data.dat in the target computer file system object fsys and read the file
using the resulting file handle:

tg = slrt;

fsys = SimulinkRealTime.fileSystem(tg);

h = fopen(fsys,'data.dat')

ans =

 2883584

d = fread(fsys,h);

See Also
fopen | SimulinkRealTime.fileSystem.fclose
| SimulinkRealTime.fileSystem.fread |
SimulinkRealTime.fileSystem.fwrite

8 MATLAB API

8-92

SimulinkRealTime.fileSystem.fread

Read open target computer file

Syntax

data = fread(file_obj,file_id)

data = fread(file_obj,file_id,offset,numbytes)

Arguments

file_obj Name of the SimulinkRealTime.fileSystem object.
file_id File identifier of the file to read.
numbytes Maximum number of bytes fread can read.
offset The position, measured from the beginning of the file, from

which fread can start to read.
data Matrix containing the binary data read.

Description

data = fread(file_obj,file_id) reads binary data from the file on the target
computer and writes it into matrix data. The file_id argument is the file identifier
associated with an open file.

data = fread(file_obj,file_id,offset,numbytes) reads numbytes bytes from
file_id starting from position offset and writes the block into matrix data.

To get a count of the total number of bytes read into data, use the following:

count = length(data);

length(data) can be less than numbytes if that number of bytes is not available.
length(data) is zero if fread is positioned at the end of the file.

 SimulinkRealTime.fileSystem.fread

8-93

Examples

Open the file data.dat in the target computer file system object fsys and read the file
using the resulting file handle:

tg = slrt;

fsys = SimulinkRealTime.fileSystem(tg);

h = fopen(fsys,'data.dat')

d = fread(fsys,h);

This function reads the file data.dat and stores the contents of the file to d. This
content is in the Simulink Real-Time file format.

See Also
fread | SimulinkRealTime.fileSystem.fclose
| SimulinkRealTime.fileSystem.fopen |
SimulinkRealTime.fileSystem.fwrite

8 MATLAB API

8-94

SimulinkRealTime.fileSystem.fwrite
Write binary data to open target computer file

Syntax

fwrite(file_obj,file_id,data)

Arguments

file_obj Name of the SimulinkRealTime.fileSystem object.
file_id File identifier of the file to write.
data Elements of matrix data to write to the specified file.

Description

From the development computer, fwrite(file_obj,file_id,data) writes the
elements of matrix data to the file identified by file_id. The data is written to the file
in column order. The file_id argument is the file identifier associated with an open file.
fwrite requires that the file be open with write permission.

Examples

Open the file data.dat in the target computer file system object fsys and write the file
using the resulting file handle:

tg = slrt;

fsys = SimulinkRealTime.fileSystem(tg);

h = fopen(fsys,'data.dat','w');

fwrite(fsys,h,magic(5));

This command writes the elements of matrix magic(5) to the file handle h. This content
is written in column order.

 SimulinkRealTime.fileSystem.fwrite

8-95

See Also
fwrite | SimulinkRealTime.fileSystem.fclose |
SimulinkRealTime.fileSystem.fopen | SimulinkRealTime.fileSystem.fread

8 MATLAB API

8-96

SimulinkRealTime.fileSystem.getfilesize
Size of file on target computer

Syntax

file_size = getfilesize(file_obj,file_id)

Arguments

file_obj Name of the SimulinkRealTime.fileSystem object
file_id File identifier of the file being sized
file_size Number of bytes in the file

Description

From the development computer, file_size = getfilesize(file_obj,file_id)
gets the size (in bytes) of the file identified by the file_id file identifier on the target
computer file system. Use the Simulink Real-Time file object method fopen to open the
file system object.

Examples

Get the size of the file identifier h for the file system object fsys:

tg = slrt;

fsys = SimulinkRealTime.fileSystem(tg);

getfilesize(fsys,h)

See Also
SimulinkRealTime.fileSystem.fopen

 SimulinkRealTime.fileSystem.mkdir

8-97

SimulinkRealTime.fileSystem.mkdir
Create folder on target computer

Syntax

mkdir(file_obj,dir_name)

Arguments

file_obj Name of the SimulinkRealTime.fileSystem object.
dir_name Name of the folder to be created.

Description

From the development computer, mkdir(file_obj,dir_name) makes a new folder in
the current folder on the target computer file system.

Examples

Create a new folder, logs, in the target computer file system object fsys:

tg = slrt;

fsys = SimulinkRealTime.fileSystem(tg);

mkdir(fsys,'logs')

See Also
mkdir | SimulinkRealTime.fileSystem.dir |
SimulinkRealTime.fileSystem.pwd

8 MATLAB API

8-98

SimulinkRealTime.fileSystem.pwd
Path to currently active folder on target computer

Syntax

active_folder = pwd(file_obj)

Arguments

file_obj Name of the SimulinkRealTime.fileSystem object.
active_folder Path to the currently active folder on the target computer.

Description

Called from the development computer, active_folder = pwd(file_obj) returns
the path to the currently active folder on the target computer. Unless cd(file_obj,
target_computer_dir) has been called, the currently active folder is the top folder of
the boot drive, usually C:\.

Examples

Return the currently active folder for the file system object fsys:

tg = slrt;

fsys = SimulinkRealTime.fileSystem(tg);

pwd(fsys)

See Also
pwd | SimulinkRealTime.fileSystem.cd | SimulinkRealTime.fileSystem.dir
| SimulinkRealTime.fileSystem.mkdir

 SimulinkRealTime.fileSystem.removefile

8-99

SimulinkRealTime.fileSystem.removefile
Remove file from target computer

Syntax

removefile(file_obj,file_name)

Arguments

file_name Name of the file to remove from the target computer file
system.

file_obj Name of the SimulinkRealTime.fileSystem object.

Description

Called from the development computer, removefile(file_obj,file_name) removes
a file from the target computer file system.

Note: You cannot recover this file once you remove it

Examples

Remove the data2.dat file from the target computer file system fsys:

tg = slrt;

fsys = SimulinkRealTime.fileSystem(tg);

removefile(fsys,'data2.dat')

8 MATLAB API

8-100

SimulinkRealTime.fileSystem.rmdir
Remove folder from target computer

Syntax

rmdir(file_obj,dir_name)

Arguments

dir_name Name of the folder to remove from the target computer file system.
file_obj Name of the SimulinkRealTime.fileSystem object.

Description

Called from the development computer, rmdir(file_obj,dir_name) removes a folder
from the target computer file system.

Note: You cannot recover this folder once you remove it.

Examples

Remove the data2dir.dat folder from the target computer file system fsys:

tg = slrt;

fsys = SimulinkRealTime.fileSystem(tg);

rmdir(fsys,'data2dir.dat')

 SimulinkRealTime.fileSystem.selectdrive

8-101

SimulinkRealTime.fileSystem.selectdrive
Select target computer drive

Syntax

selectdrive(file_obj,'drive')

Arguments

drive Name of the drive to set.
file_obj Name of the SimulinkRealTime.fileSystem object.

Description

Called from the development computer, selectdrive(file_obj,'drive') sets the
currently active drive of the target computer to the specified string. Enter the drive
string with an extra backslash (\). For example, D:\\ for the D:\ drive.

Examples

Set the current target computer drive to D:\:

tg = slrt;

fsys = SimulinkRealTime.fileSystem(tg);

selectdrive(fsys,'D:\\')

8 MATLAB API

8-102

SimulinkRealTime.target
Object representing target computer and currently loaded real-time application

Description

Provides access to methods and properties that start and stop the real-time application,
read and set parameters, monitor signals, and retrieve status information about the
target computer. You can also reboot the target computer and load and unload the real-
time application.

Constructor

Constructor Description

SimulinkRealTime.target

(constructor)

Create target object representing real-time application

Methods

Method Description

SimulinkRealTime.target.addscopeCreate scopes
SimulinkRealTime.target.closeClose serial port connecting development computer with target

computer
SimulinkRealTime.target.getlogAll or part of output logs from target object
SimulinkRealTime.target.getparamValue of target object parameter index
SimulinkRealTime.target.getparamidParameter index from parameter list
SimulinkRealTime.target.getparamnameBlock path and parameter name from index list
SimulinkRealTime.target.getscopeScope object pointing to scope defined in kernel
SimulinkRealTime.target.getsignalValue of target object signal index
SimulinkRealTime.target.getsignalidSignal index or signal property from signal list
SimulinkRealTime.target.getsignalidsfromlabelReturn vector of signal indices
SimulinkRealTime.target.getsignallabelReturn signal label

 SimulinkRealTime.target

8-103

Method Description

SimulinkRealTime.target.getsignalnameSignal name from index list
SimulinkRealTime.target.loadDownload real-time application to target computer
SimulinkRealTime.target.loadparamsetRestore parameter values saved in specified file
SimulinkRealTime.target.pingTests communication between development and target computers
SimulinkRealTime.target.rebootReboot target computer
SimulinkRealTime.target.remscopeRemove scope from target computer
SimulinkRealTime.target.saveparamsetSave current real-time application parameter values
SimulinkRealTime.target.setparamChange writable target object parameters
SimulinkRealTime.target.startStart execution of real-time application on target computer
SimulinkRealTime.target.stopStop execution of real-time application on target computer
SimulinkRealTime.target.unloadRemove current real-time application from target computer

Properties

To get the value of a readable target object property from a target object:

value = target_object.property_name

For example, to get the CommunicationTimeOut of the target object:

target_object = slrt;

value = target_object.CommunicationTimeOut

To set the value of a writable target object property from a target object:

target_object.property_name = new_value

For example, to set the CommunicationTimeOut of the target object:

target_object = slrt;

target_object.CommunicationTimeOut = 10

At the target computer command line, you can set the target object properties stoptime,
sampletime, and writable model parameters.

stoptime = floating_point_number

sampletime = floating_point_number

8 MATLAB API

8-104

setpar parameter_index = parameter_value

Property Description Writable

Application Name of the Simulink model and real-time
application built from that model.

No

AvgTET Average task execution time. This value is
an average of the measured CPU times, in
seconds, to run the model equations and
post outputs during each sample interval.
Task execution time is nearly constant,
with minor deviations due to cache, memory
access, interrupt latency, and multirate model
execution.

The TET includes:

• Complete I/O latency.
• Data logging for output, state, and TET, as

well as the data captured in scopes.
• Time spent executing tasks related to

asynchronous interrupts while the real
time task is running.

• Parameter updating latency. This
latency is incurred if the Double buffer
parameter changes parameter is set in
the Simulink Real-Time Options node of
the model Configuration Parameters dialog
box.

The TET is not the only consideration in
determining the minimum achievable sample
time. Other considerations are:

• Time required to measure TET.
• Interrupt latency required to schedule and

run one step of the model.

No

CommunicationTimeOut Communication timeout between the
development and target computers, in seconds.

Yes

 SimulinkRealTime.target

8-105

Property Description Writable

Connected Communication status between the
development computer and the target
computer. Values are 'Yes' and 'No'.

No

CPUoverload CPU status for overload. If the real-time
application requires more CPU time than
the sample time of the model, this value is
changed from 'none' to 'detected' and the
current run is stopped. Returning this status
to 'none' requires a faster processor or a
larger sample time.

No

ExecTime Execution time. Time, in seconds, since your
real-time application started running. When
the real-time application stops, the total
execution time is displayed.

No

LogMode Controls which data points are logged:

• Time-equidistant logging. Logs a data
point at every time interval. Set value to
'Normal'.

• Value-equidistant logging. Logs a data
point only when an output signal from the
OutputLog changes by a specified value
(increment). Set the value to the difference
in signal values.

Yes

MaxLogSamples Maximum number of samples for each
logged signal within the circular buffers
for TimeLog, StateLog, OutputLog, and
TETLog. StateLog and OutputLog can have
one or more signals.

This value is calculated by dividing the Signal
Logging Buffer Size by the number of logged
signals. The Signal Logging Buffer Size box
is in the Simulink Real-Time Options pane
of the Configuration Parameters dialog box.

No

8 MATLAB API

8-106

Property Description Writable

MaxTET Maximum task execution time. Corresponds to
the slowest time (longest time measured), in
seconds, to update model equations and post
outputs.

No

MinTET Minimum task execution time. Corresponds to
the fastest time (smallest time measured), in
seconds, to update model equations and post
outputs.

No

Mode Execution mode of the real time application,
governed by parameter settings during
Simulink Coder code generation. Values are
'Real-Time Singletasking' and 'Real-
Time Multitasking'. The default value is
'Real-Time Singletasking'.

No

NumLogWraps The number of times the circular data logging
buffer wraps. The buffer wraps each time the
number of samples exceeds MaxLogSamples.

No

NumParameters The number of parameters from your Simulink
model that you can tune or change.

No

NumSignals The number of signals from your Simulink
model that you can view with a scope.

No

OutputLog Storage in the MATLAB workspace for the
output or Y-vector logged during execution of
the real-time application.

No

 SimulinkRealTime.target

8-107

Property Description Writable

Parameters List of tunable parameters. This list is visible
only when ShowParameters is set to 'on'.

• Property value. Value of the parameter in a
Simulink block.

• Type. Data type of the parameter. Always
double.

• Size. Size of the parameter. For example,
scalar, 1-by-2 vector, or 2-by-3 matrix.

• Parameter name. Name of a parameter in a
Simulink block.

• Block name. Name of a Simulink block.

No

SampleTime Time between samples. This value equals the
step size, in seconds, for updating the model
equations and posting the outputs.

Some blocks cannot handle sample time
changes at run-time. For models that contain
these blocks, change the sample time in the
model first, then build that model.

Yes

Scopes List of index numbers, with one index for each
scope.

No

SessionTime Time since the kernel started running on your
target computer. This time is also the elapsed
time since you started the target computer.
Values are in seconds.

No

ShowParameters Flag set to view or hide the list of parameters
from your Simulink blocks. This list is shown
when you display the properties for a target
object. Values are 'on' and 'off'.

Yes

ShowSignals Flag set to view or hide the list of signals from
your Simulink blocks. This list is shown when
you display the properties for a target object.
Values are 'on' and 'off'.

Yes

8 MATLAB API

8-108

Property Description Writable

Signals List of viewable signals. This list is visible
only when ShowSignals is set to 'on'.

• Property name. S0, S1. . .
• Property value. Value of the signal.
• Block name. Name of the Simulink block

that the signal comes from.

No

StateLog Storage in the MATLAB workspace for the
state or x-vector logged during execution of the
real-time application.

No

Status Execution status of your real-time application.
Values are 'stopped' and 'running'.

No

StopTime Time when the real-time application stops
running. Values are in seconds.

The original value is set in the Solver pane of
the Configuration Parameters dialog box.

When the ExecTime reaches StopTime, the
application stops running. The value Inf
allows the real-time application to run until
you manually stop it or restart the target
computer.

Yes

TETLog Storage in the MATLAB workspace for a
vector containing task execution times during
execution of the real-time application.

To enable logging of the TET, you must select
the Log Task Execution Time check box in
the Simulink Real-Time Options pane of
the Configuration Parameters dialog box.

No

TimeLog Storage in the MATLAB workspace for the
time or T-vector logged during execution of the
real-time application.

No

 SimulinkRealTime.target

8-109

Property Description Writable

ViewMode Display one scope or all scopes on the target
computer. Value is a single scope index or
'all'.

This property is active only if the environment
property TargetScope is set to enabled.

Yes

More About
• “Blocks Whose Outputs Depend on Inherited Sample Time”

Related Examples
• “Tune Parameters at Target Computer Command Line”

8 MATLAB API

8-110

SimulinkRealTime.target (constructor)
Create object to manage target computer

Syntax

target_object = SimulinkRealTime.target

target_object = SimulinkRealTime.target(target_name)

Description

target_object = SimulinkRealTime.target constructs a target object
representing the default target computer.

target_object = SimulinkRealTime.target(target_name) constructs a target
object representing the target computer designated by target_name.

Examples

Default target computer

Creates a target object to communicate with the default target computer, which is
connected to the development computer.

target_object = SimulinkRealTime.target

Target: TargetPC1

 Connected = Yes

 Application = loader

Specific target computer

Creates a target object to communicate with target computer TargetPC1, which is not
connected to the development computer.

target_object = SimulinkRealTime.target('TargetPC1')

Target: TargetPC1

 SimulinkRealTime.target (constructor)

8-111

 Connected = No

Input Arguments

target_name — Name assigned to target computer
string
Example: ‘TargetPC1’
Data Types: char

Output Arguments

target_object — Target object representing target computer
structure

See Also
slrt | Target Settings Properties

8 MATLAB API

8-112

SimulinkRealTime.target.addscope
Create scopes

Syntax

scope_object = addscope(target_object, scope_type, scope_number)

Arguments

target_object Name of a target object. The default target name is tg.
scope_type Values are 'host', 'target', or 'file'. This argument is

optional. The default value is host.
scope_number Scope number or vector of new scope indices. This argument is

optional. The default value is the next available integer in the
target object property Scopes.

If you enter the scope index for an existing scope object, the result
is an error.

scope_object Object representing the newly-created scope.

Description

addscope creates a scope of the specified type and updates the target object property
Scopes. This method returns a scope object vector. If the result is not assigned to a
MATLAB variable, the scope object properties are listed in the Command Window.

scope_object = addscope(target_object, scope_type, scope_number)

creates a scope on the target computer and returns the object corresponding to this scope.

At the target computer command line, you can add only a single target scope:

addscope

addscope scope_number

 SimulinkRealTime.target.addscope

8-113

The Simulink Real-Time product supports 10 target scopes, 8 file scopes, and as many
host scopes as the target computer resources can support. If you try to add a scope with
the same index as an existing scope, the result is an error.

Examples

Create a scope and scope object sc1 using the addscope method:

tg = slrt;

sc1 = addscope(tg,'target',1)

When you do this, the addscope method creates a target scope on the target computer
with an index of 1, creates a scope object on the development computer˙ representing the
new target scope, and changes target object property Scopes from No scopes defined
to 1. It assigns the scope object to the variable sc1 on the development computer˙.

Create a scope with the addscope method and then create a scope object, corresponding
to this scope, using the getscope method:

tg = slrt;

addscope(tg,'target',1)

sc1 = getscope(tg,1)

When you do this, the addscope method creates a target scope on the target computer
with an index of 1, creates a scope object on the development computer, and changes

8 MATLAB API

8-114

target object property Scopes from No scopes defined to 1. It does not assign the
scope object to a variable.

Create two scopes using a vector of scope objects and assign the scope objects to variable
scvector:

tg = slrt;

scvector = addscope(tg, 'target', [1, 2])

When you do this, the addscope method creates two target scopes on the target
computer with scope indices of 1 and 2, creates two scope objects on the development
computer that represent the new scopes, changes target object property Scopes from No
scopes defined to 1,2, and assigns a vector containing the two scope objects to the
variable scvector.

Create a scope and scope object sc4 of type file using the method addscope:

tg = slrt;

sc4 = addscope(tg,'file',4)

When you do this, the addscope method creates a file scope on the target computer with
an index of 4, creates a scope object on the development computer, and changes target
object property Scopes from No scopes defined to 4. It assigns the scope object to the
variable sc4.

More About
• “Target Computer Commands”
• “Target Scope Usage”
• “Host Scope Usage”
• “File Scope Usage”
• “Application and Driver Scripts”

See Also
SimulinkRealTime.target.remscope | SimulinkRealTime.target.getscope

 SimulinkRealTime.target.close

8-115

SimulinkRealTime.target.close
Close connection between development computer and target computer

Syntax

close(target_object)

Arguments

target_object Name of a target object.

Description

close(target_object) closes the connection between the development computer and
a target computer. The target object and other associated objects are still valid, and will
automatically connect to the target computer the next time they are accessed.

8 MATLAB API

8-116

SimulinkRealTime.target.getlog
Portion of output logs from target object

Syntax

log = getlog(target_object, 'log_name', first_point, number_samples,

decimation)

Arguments

log User-defined MATLAB variable.
'log_name' Values are TimeLog, StateLog, OutputLog, or TETLog. This

argument is required.
first_point First data point. The logs begin with 1. This argument is

optional. The default value is 1.
number_samples Number of samples after the start time. This argument is

optional. The default value is all points in log.
decimation 1 returns all sample points. n returns every nth sample point.

This argument is optional. The default value is 1.
log Receives the log entries as a matrix.

Description

log = getlog(target_object, 'log_name', first_point, number_samples,

decimation) gets a portion of the data log from a target object.

Examples

To get the first 1000 points in a log:

tg = slrt;

Out_log = getlog(tg, 'TETLog', 1, 1000)

 SimulinkRealTime.target.getlog

8-117

To get every other point in the output log and plot values:

tg = slrt;

Output_log = getlog(tg, 'TETLog', 1, 10, 2)

Time_log = getlog(tg, 'TimeLog', 1, 10, 2)

plot(Time_log, Output_log)

Related Examples
• “Set Configuration Parameters”

8 MATLAB API

8-118

SimulinkRealTime.target.getparam
Value of target object parameter index

Syntax

value = getparam(target_object, parameter_index)

Arguments

target_object Name of a target object.
parameter_index Index number of the parameter.

Description

value = getparam(target_object, parameter_index) returns the value of the
parameter associated with parameter_index.

Examples

Get the value of the parameter with index 5:

tg = slrt;

getparam(tg, 5)

ans =

400

 SimulinkRealTime.target.getparamid

8-119

SimulinkRealTime.target.getparamid
Parameter index from parameter list

Syntax

paramid = getparamid(target_object, 'block_name', 'parameter_name')

Arguments

target_object Name of a target object.
'block_name' Simulink block path without model name.
'parameter_name' Name of a parameter within a Simulink block.

Description

paramid = getparamid(target_object, 'block_name', 'parameter_name')

returns the index of a parameter in the parameter list based on the path to the
parameter name. You must enter the names in full. The names are case sensitive. For
block_name, enter the mangled name that Simulink Coder uses for code generation.

Examples

Get the property index of the Gain parameter in the Simulink block Gain1 and print its
value:

tg = slrt;

getparamid(tg, 'Gain1', 'Gain')

getparam(tg, paramid)

Get the parameter property for the Gain parameter in the Simulink block Gain1,
incrementally increase the gain, and print its value:

tg = slrt;

8 MATLAB API

8-120

paramid = getparamid(tg, 'Gain1', 'Gain');

for i = 1 : 3

 setparam(tg, paramid, (i*2000))

 getparam(tg, paramid)

end

More About
• “Application and Driver Scripts”
• “Why Does the getparamid Function Return Nothing?”

See Also
SimulinkRealTime.target.getsignalid

 SimulinkRealTime.target.getparamname

8-121

SimulinkRealTime.target.getparamname
Block path and parameter name from parameter index

Syntax

[block_path, parameter_name] = getparamname(target_object,

parameter_index)

Arguments

target_object Name of a target object.
parameter_index Index number of the parameter.
[block_path,

parameter_name]

Output vector containing the block path and
parameter name for the specified parameter.

Description

[block_path, parameter_name] = getparamname(target_object,

parameter_index) returns a vector containing two strings, block path and parameter
name, for the parameter specified by parameter_index.

Examples

Get the block path and parameter name of parameter index 5:

tg = slrt;

[block_path, parameter_name] = getparamname(tg,5)

block_path =

Signal Generator

parameter_name =

Amplitude

8 MATLAB API

8-122

getPCIInfo

Return information about PCI boards installed in target computer

Syntax

getPCIInfo(target_object, 'installed')

getPCIInfo(target_object,'ethernet')

getPCIInfo(target_object, 'all')

getPCIInfo(target_object, 'verbose')

pci_devices = getPCIInfo(target_object, ___)

getPCIInfo(target_object, 'supported')

getPCIInfo(target_object, 'supported', 'ethernet')

pci_devices_supported = getPCIInfo(target_object, 'supported', ___)

Description

getPCIInfo(target_object, 'installed') queries the target computer,
represented by target_object, for installed PCI devices (boards) that are supported
by driver blocks in the Simulink Real-Time block library. The software displays in
the Command Window information about the PCI devices that getPCIInfo found,
including:

• PCI bus number
• Slot number
• Assigned IRQ number
• Vendor (manufacturer) name
• Device (board) name
• Device type
• Vendor PCI ID
• Device PCI ID
• Device release version

 getPCIInfo

8-123

Before you can use this call, you must verify that the target computer has started
properly under the Simulink Real-Time kernel and that the Ethernet link is
working. The real-time application can be loaded or the loader can be active and
waiting for input. You can check these preconditions by verifying that the function
SimulinkRealTime.pingTarget returns success.

Before building the model, you can use getPCIInfo to find resources to enter into
a driver block dialog box. Such resources include PCI bus number, slot number, and
assigned IRQ number.

getPCIInfo(target_object,'ethernet') queries the target computer, represented
by target_object, for installed Ethernet controllers supported by Simulink Real-Time.

getPCIInfo(target_object, 'all') displays information about all of the PCI
devices found on the target computer represented by target_object. This information
includes graphics controllers, network cards, SCSI cards, and devices that are part of the
motherboard chip set (for example, PCI-to-PCI bridges).

getPCIInfo(target_object, 'verbose') shows the information displayed by
getPCIInfo(target_object, 'all') for the target computer represented by
target_object, plus information about the PCI addresses that the BIOS assigns to this
board.

pci_devices = getPCIInfo(target_object, ___) queries the target computer
represented by target_object according to the additional arguments you supplied. The
call returns a structure containing information about the PCI devices that the software
found on the target computer.

getPCIInfo(target_object, 'supported') displays a list of the PCI devices
supported by the Simulink Real-Time block library. This call does not access the target
computer, so the Ethernet link does not have to be active.

getPCIInfo(target_object, 'supported', 'ethernet') displays a list of the
Ethernet controllers that are supported by Simulink Real-Time. This call does not access
the target computer, so the Ethernet link does not have to be active.

pci_devices_supported = getPCIInfo(target_object, 'supported',

___) returns a structure containing a list of devices supported by Simulink Real-Time
according to the additional arguments you supplied. This call does not access the target
computer, so the Ethernet link does not have to be active.

8 MATLAB API

8-124

Input Arguments

target_object — Object representing target computer
object created by slrt

Object representing the target computer being queried, as returned by slrt.

Example: target_object = slrt('TargetPC1')

Data Types: function_handle

Output Arguments

pci_devices — Information about the PCI devices in the target computer
vector

The vector that getPCIInfo returns when you call it without an argument contains
information only for those PCI devices that the Simulink Real-Time library blocks
support.

The vectors returned by getPCIInfo with the arguments 'all' and 'verbose'
contain information about all PCI devices in the target computer. The vector are
identical.

The fields in this structure are:

Bus — PCI bus where device resides
scalar

Bus and Slot uniquely identify the location of a device or bus adapter in the target
computer.

Slot — PCI slot where device resides
scalar

Slot and Bus uniquely identify the location of a device or bus adapter in the target
computer.

VendorID — Identifier for manufacturer of the device
string

 getPCIInfo

8-125

Hexadecimal numeric string containing the identifier that the PCI standards
organization assigns to the manufacturer of this device or bus adapter.

DeviceID — Identifier for device among those manufactured by the vendor
string

Hexadecimal numeric string containing the identifier that the manufacturer assigns to
this device or bus adapter.

SubVendorID — Identifier for manufacturer of subsystem
string

Hexadecimal numeric string containing the identifier that the PCI standards
organization assigns to the manufacturer of the entire subsystem (board).

SubDeviceID — Identifier for subsystem among those manufactured by the subvendor
string

Hexadecimal numeric string containing the identifier that the manufacturer assigns to
this subsystem (board).

BaseClass — Standard PCI class of the device
string

Hexadecimal numeric string containing the standard PCI base classification of this
device or bus adapter. BaseClass and SubClass identify the type and function of the
device.

SubClass — Standard PCI subclass of the device
string

Hexadecimal numeric string containing the standard PCI subclass classification of this
device or bus adapter. SubClass and BaseClass identify the type and function of the
device.

Interrupt — IRQ used by the device
scalar

Provides the board-level interrupt that the device or bus adapter uses to trigger I/O with
the target computer CPU.

BaseAddresses — Information for each Base Address Register (BAR) used by the device
vector

8 MATLAB API

8-126

For each BAR used that this device or bus adapter uses, the vector contains a structure
with the following fields:

AddressSpaceIndicator — Indicates whether the address is a memory or I/O address
0 | 1

• 0 — Memory address
• 1 — I/O address

BaseAddress — Memory address used by the device
string

Hexadecimal string containing the base memory address that the device uses.

MemoryType — Indicates the size of the address decode, 32-bit or 64-bit
0 | 1

Not used if AddressSpaceIndicator is 1 (I/O address).

• 0 — 32-bit address decode
• 1 — 64-bit address decode

Prefetchable — Indicates whether the memory is prefetchable
0 | 1

Not used if AddressSpaceIndicator is 1 (I/O address).

• 0 — Address is not prefetchable
• 1 — Address is prefetchable

VendorName — Name of vendor of device
string

Identifies the vendor of the specific device or bus adapter. Set to 'Unknown' for unknown
devices or bus adapters.

Release — MATLAB release version in which driver became available
string

If the Simulink Real-Time block library supports the device, it contains the MATLAB
and Simulink release version in which the driver was released. Otherwise, it contains an
empty vector.

 getPCIInfo

8-127

Notes — Additional information about the device
string

Contains additional description of the device or bus adapter.

DeviceName — Name of device
string

Identifies the specific device or bus adapter. Set to 'Unknown' for unknown devices or
bus adapters.

DeviceType — Identifies the functions of the device
string

Contains abbreviations such as 'DI' (digital input) that indicate the function or
functions of the device or bus adapter.

ADChan — Number of analog inputs
string

Decimal numeric string containing the number of analog inputs to the device.

DAChan — Number of analog outputs
string

Decimal numeric string containing the number of analog outputs from the device.

DIOChan — Number of digital inputs and outputs
string

Decimal numeric string containing the number of digital inputs and outputs to and from
the device.

pci_devices_supported — Information about the PCI devices supported by the product
vector

Vector of information about the devices and bus adapters that the blocks in the Simulink
Real-Time block library represent.

The fields are as follows:

VendorID — Identifier for manufacturer of the device
string

8 MATLAB API

8-128

Hexadecimal numeric string containing the identifier that the PCI standards
organization assigns to the manufacturer of this device or bus adapter.

DeviceID — Identifier for device among those manufactured by the vendor
string

Hexadecimal numeric string containing the identifier that the manufacturer assigns to
this device or bus adapter.

SubVendorID — Identifier for manufacturer of subsystem
string

Hexadecimal numeric string containing the identifier that the PCI standards
organization assigns to the manufacturer of the entire subsystem (board).

SubDeviceID — Identifier for subsystem among those manufactured by the subvendor
string

Hexadecimal numeric string containing the identifier that the manufacturer assigns to
this subsystem (board).

DeviceName — Name of device
string

Identifies the specific device or bus adapter. Set to 'Unknown' for unknown devices or
bus adapters.

VendorName — Name of vendor of device
string

Identifies the vendor of the specific device or bus adapter. Set to 'Unknown' for unknown
devices or bus adapters.

DeviceType — Identifies the functions of the device
string

Contains abbreviations such as 'DI' (digital input) that indicate the function or
functions of the device or bus adapter.

DAChan — Number of analog outputs
string

Decimal numeric string containing the number of analog outputs from the device.

 getPCIInfo

8-129

ADChan — Number of analog inputs
string

Decimal numeric string containing the number of analog inputs to the device.

DIOChan — Number of digital inputs and outputs
string

Decimal numeric string containing the number of digital inputs and outputs to and from
the device.

Release — MATLAB release version in which driver became available
string

If the Simulink Real-Time block library supports the device, it contains the MATLAB
and Simulink release version in which the driver was released. Otherwise, it contains an
empty vector.

Notes — Additional information about the device
string

Contains additional description of the device or bus adapter.

Examples

Display information for PCI devices on default computer that the Simulink Real-Time block
library supports

Start the default target computer with the Simulink Real-Time kernel. Verify the
connection between the development and the target computer. At the command prompt,
type the command on the development computer.

slrtpingtarget

target_object = slrt;

getPCIInfo(target_object, 'installed')

List of installed PCI devices:

Measurement Computing PCI-DIO24

 Bus 1, Slot 11, IRQ 10

8 MATLAB API

8-130

 DI DO

 VendorID 0x1307, DeviceID 0x0028,

 SubVendorID 0x1307, SubDeviceID 0x0028

 A/D Chan: 0, D/A Chan: 0, DIO Chan: 24

 Released in: R14SP2 or Earlier

.

.

.

Display information for Ethernet controllers on default computer that Simulink Real-Time
supports

Start the default target computer with the Simulink Real-Time kernel. Verify the
connection between the development and target computers. At the MATLAB command
prompt, type the command on the development computer.

slrtpingtarget

target_object = slrt;

getPCIInfo(target_object, 'ethernet')

List of installed PCI devices:

Intel 82541GI_LF

 Bus 16, Slot 4, IRQ 10

 Ethernet controller

 VendorID 0x8086, DeviceID 0x107c, SubVendorID 0x8086,

 SubDeviceID 0x1376

 Released in: R2006b

 Notes: Intel Gigabit Ethernet series

Display information for all PCI devices on default computer

Start the default target computer with the Simulink Real-Time kernel. Verify the
connection between the development and target computers. At the command prompt,
type the command on the development computer.

slrtpingtarget

target_object = slrt;

getPCIInfo(target_object, 'all')

List of installed PCI devices:

 getPCIInfo

8-131

Intel Unknown

 Bus 0, Slot 0, IRQ 0

 Host Bridge

 VendorID 0x8086, DeviceID 0x1130,

 SubVendorID 0x8086, SubDeviceID 0x4532

.

.

.

Measurement Computing PCI-DIO24

 Bus 1, Slot 11, IRQ 10

 DI DO

 VendorID 0x1307, DeviceID 0x0028,

 SubVendorID 0x1307, SubDeviceID 0x0028

 A/D Chan: 0, D/A Chan: 0, DIO Chan: 24

 Released in: R14SP2 or Earlier

.

.

.

Display verbose information for all PCI devices on default computer

Start the default target computer with the Simulink Real-Time kernel. Verify the
connection between the development and target computers. At the command prompt,
type the command on the development computer.

slrtpingtarget

target_object = slrt;

getPCIInfo(target_object, 'verbose')

List of installed PCI devices:

Intel Unknown

 Bus 0, Slot 0, IRQ 0

 Host Bridge

 VendorID 0x8086, DeviceID 0x1130,

 SubVendorID 0x8086, SubDeviceID 0x4532

 BaseClass 6, SubClass 0

 BAR BaseAddress AddressSpace MemoryType PreFetchable

 0) E8000000 Memory 32-bit decoder no

.

.

.

Measurement Computing PCI-DIO24

8 MATLAB API

8-132

 Bus 1, Slot 11, IRQ 10

 DI DO

 VendorID 0x1307, DeviceID 0x0028,

 SubVendorID 0x1307, SubDeviceID 0x0028

 A/D Chan: 0, D/A Chan: 0, DIO Chan: 24

 Released in: R14SP2 or Earlier

 BaseClass FF, SubClass FF

 BAR BaseAddress AddressSpace

 1) DC00 I/O

 2) DFF4 I/O

.

.

.

Return information for PCI devices on default computer that the Simulink Real-Time block
library supports

Start the default target computer with the Simulink Real-Time kernel. Verify the
connection between the development and target computers. At the command prompt,
type the command on the development computer. Display the first structure in the
vector.

slrtpingtarget

target_object = slrt;

pci_devices = getPCIInfo(target_object);

pci_devices(1)

ans =

 Bus: 1

 Slot: 11

 VendorID: '1307'

 DeviceID: '28'

 SubVendorID: '1307'

 SubDeviceID: '28'

 BaseClass: 'FF'

 SubClass: 'FF'

 Interrupt: 10

 BaseAddresses: [1x6 struct]

 VendorName: 'Measurement Computing'

 Release: 'R14SP2 or Earlier'

 Notes: ''

 DeviceName: 'PCI-DIO24'

 DeviceType: 'DI DO'

 getPCIInfo

8-133

 ADChan: '0'

 DAChan: '0'

 DIOChan: '24'

Return information for all PCI devices on default computer

Start the default target computer with the Simulink Real-Time kernel. Verify the
connection between the development and target computers. At the command prompt,
type the command on the development computer. Display the first structure in the
vector.

slrtpingtarget

target_object = slrt;

pci_devices = getPCIInfo(target_object, 'all');

pci_devices(1)

ans =

 Bus: 0

 Slot: 0

 VendorID: '8086'

 DeviceID: '1130'

 SubVendorID: '8086'

 SubDeviceID: '4532'

 BaseClass: '6'

 SubClass: '0'

 Interrupt: 0

 BaseAddresses: [1x6 struct]

 VendorName: 'Intel'

 Release: ''

 Notes: ''

 DeviceName: 'Unknown'

 DeviceType: 'Host Bridge'

 ADChan: ''

 DAChan: ''

 DIOChan: ''

Return verbose information for all PCI devices via target_object

Start the default target computer with the Simulink Real-Time kernel. Use
SimulinkealTime.target to get the target_object. Verify the connection between
the development and target computers. At the command prompt, type the command on
the development computer. Display the first structure in the vector.

8 MATLAB API

8-134

SimulinkRealTime.pingTarget('TargetPC1')

pci_devices = getPCIInfo(target_object,'verbose');

pci_devices(1)

ans =

 Bus: 0

 Slot: 0

 VendorID: '8086'

 DeviceID: '1130'

 SubVendorID: '8086'

 SubDeviceID: '4532'

 BaseClass: '6'

 SubClass: '0'

 Interrupt: 0

 BaseAddresses: [1x6 struct]

 VendorName: 'Intel'

 Release: ''

 Notes: ''

 DeviceName: 'Unknown'

 DeviceType: 'Host Bridge'

 ADChan: ''

 DAChan: ''

 DIOChan: ''

Display information for all PCI devices that the Simulink Real-Time block library supports

At the command prompt, type the commands on the development computer. The target
computer does not have to be active.

target_object = SimulinkRealTime.target

getPCIInfo(target_object, 'supported')

List of supported PCI devices:

Vendor Device Type . . .

ADLINK PCI-6208A AO DI DO . . .

BitFlow NEON CameraLink Video . . .

.

.

.

Speedgoat IO321 (PMC-FPGA) AI (IO321-5) . . .

 getPCIInfo

8-135

Speedgoat IO331 (PMC-FPGA) DI DO (LVDS/LVCMOS) . . .

Display information for all Ethernet controllers that Simulink Real-Time supports

At the MATLAB prompt, type the command on the development computer.

target_object = SimulinkRealTime.target

getPCIInfo(target_object, 'supported', 'ethernet')

List of supported Ethernet controllers:

Vendor Device VendorID DeviceID Release

3Com 3c900B Combo 10B7 9005 R2006a+

3Com 3c905B Combo 10B7 9058 R2006a+

.

.

.

Winbond Electronics 89C940 1050 5A5A R2006a+

Winbond Electronics 89C940 8C4A 1980 R2006a+

Return information for all PCI devices that the Simulink Real-Time block library supports

At the command prompt, type the commands on the development computer. The target
computer does not have to be active.

target_object = SimulinkRealTime.target

pci_devices_supported = getPCIInfo(target_object, 'supported');

pci_devices_supported(1)

ans =

 VendorID: '144A'

 DeviceID: '6208'

 SubVendorID: '-1'

 SubDeviceID: '-1'

 DeviceName: 'PCI-6208A'

 VendorName: 'ADLINK'

 DeviceType: 'AO DI DO'

 DAChan: '8'

 ADChan: '0'

 DIOChan: '4'

 Release: 'R14SP2 or Earlier'

8 MATLAB API

8-136

 Notes: 'PCI-6208A features 8 current outputs w...'

Return information for all Ethernet controllers that Simulink Real-Time supports

At the MATLAB prompt, type the command on the development computer.

target_object = SimulinkRealTime.target

pci_devices_supported =

 getPCIInfo(target_object, 'supported', 'ethernet');

pci_devices_supported(1)

ans =

 VendorID: '10B7'

 DeviceID: '9005'

 SubVendorID: '-1'

 SubDeviceID: '-1'

 DeviceName: '3c900B Combo'

 VendorName: '3Com'

 DeviceType: 'Ethernet controller'

 DAChan: ''

 ADChan: ''

 DIOChan: ''

 Release: 'R2006a+'

 Notes: '3Com Etherlink 90x series'

• “Where to Find PCI Board Information”
• “Command-Line Ethernet Card Selection by Index”

More About
• “PCI Bus I/O Devices”

 SimulinkRealTime.target.getscope

8-137

SimulinkRealTime.target.getscope

Scope object vector

Syntax

scope_object_vector = getscope(target_object)

scope_object_vector = getscope(target_object,scope_number_vector)

Arguments

target_object Name of a target object
scope_number_vector Vector of existing scope indices listed in the target object
scope_object_vector Vector of scope objects associated with target object

Description

scope_object_vector = getscope(target_object) returns a scope object vector,
each element pointing to a scope defined in the target computer kernel.

scope_object_vector = getscope(target_object,scope_number_vector) gets
the scope or scopes with the numbers stored in scope_number_vector. If you try to get
a nonexistent scope, the result is an error.

8 MATLAB API

8-138

Examples

If your Simulink model has a Simulink Real-Time target scope block, the kernel creates a
target scope when you download the real-time application to the target computer.

To change the number of samples, you must create a scope object, and then change the
scope object property NumSamples:

tg = slrt;

sc1 = getscope(tg,1)

sc1.NumSamples = 500

The following example gets the properties of scopes 1 and 2 on the target computer and
creates a vector of scope objects on the development computer.

tg = slrt;

scvector = getscope(tg, [1,2])

The following example gets the properties of all scopes on the target computer and
creates a vector of scope objects on the development computer. If the target object has
more than one scope, it creates a vector of scope objects.

tg = slrt;

scvector = getscope(tg)

 SimulinkRealTime.target.getscope

8-139

More About
• “Application and Driver Scripts”

See Also
SimulinkRealTime.getTargetSettings | SimulinkRealTime.target.remscope

8 MATLAB API

8-140

SimulinkRealTime.target.getsignal
Value of target object signal index

Syntax

signal_value = getsignal(target_object, signal index)

Arguments

target_object Name of a target object.
signal_index Index number of the signal.

Description

signal_value = getsignal(target_object, signal index) returns the value
of the signal associated with signal_index at the time the request is made. The value
is not time-stamped, and successive calls to this function will not necessarily return
successive signal values.

Examples

Get the value of signal associated with signal index 2:

tg = slrt;

getsignal(tg, 2)

ans =

-3.3869e+006

 SimulinkRealTime.target.getsignalid

8-141

SimulinkRealTime.target.getsignalid
Signal index or signal property from signal list

Syntax

signal_id = getsignalid(target_object, 'signal_name')

Arguments

target_object Name of an existing target object.
signal_name Enter the name of a signal from your model.

• For blocks with a single signal, signal_name is equal to
the block name.

• For blocks with multiple signals, Simulink Real-Time
constructs signal_name by appending 's1', 's2', . . ., to
the block name.

Description

signal_id = getsignalid(target_object, 'signal_name') returns the index
or name of a signal from the signal list, based on the path to the signal name.

You must enter the block names in full. The block names are case sensitive. For the block
name, enter the mangled name that Simulink Coder uses for code generation.

Examples

Get the signal index for the single signal from the Simulink block Gain1:

tg = slrt;

getsignalid(tg, 'Gain1')

ans =

8 MATLAB API

8-142

6

More About
• “Application and Driver Scripts”
• “Why Does the getparamid Function Return Nothing?”

See Also
SimulinkRealTime.target.getparamid

 SimulinkRealTime.target.getsignalidsfromlabel

8-143

SimulinkRealTime.target.getsignalidsfromlabel
Vector of signal indices

Syntax

index_vector = getsignalidsfromlabel(target_object, signal_label)

Arguments

target_object Name of a target object.
signal_label Signal label (from Simulink model).

Description

index_vector = getsignalidsfromlabel(target_object, signal_label)

returns a vector of one or more signal indices that are associated with the labeled signal,
signal_label.

You must have labeled the signal for which you request the index using the Simulink
Signal name parameter. You must have applied a unique label. That is, only one signal
has the label signal_label.

The Simulink Real-Time software refers to Simulink signal names as signal labels.

Examples

Get the vector of signal indices for a signal labeled Gain:

tg = slrt;

getsignalidsfromlabel(tg, 'xpcoscGain')

ans =

0

8 MATLAB API

8-144

More About
• “Signal Properties Controls”

See Also
SimulinkRealTime.target.getsignallabel

 SimulinkRealTime.target.getsignallabel

8-145

SimulinkRealTime.target.getsignallabel
Signal label for signal index

Syntax

signal_label = getsignallabel(target_object, signal_index)

Arguments

target_object Name of a target object.
signal_index Index number of the signal.

Description

signal_label = getsignallabel(target_object, signal_index) returns the
signal label for the specified signal index, signal_index.

You must have labeled the signal for which you request the index using the Simulink
Signal name parameter. The Simulink Real-Time software refers to Simulink signal
names as signal labels.

Examples

Get the signal label for signal index 0:

tg = slrt;

getsignallabel(tg, 0)

ans =

xpcoscGain

More About
• “Signal Properties Controls”

8 MATLAB API

8-146

See Also
SimulinkRealTime.target.getsignalidsfromlabel

 SimulinkRealTime.target.getsignalname

8-147

SimulinkRealTime.target.getsignalname
Signal name from index list

Syntax

signal_name = getsignalname(target_object, signal_index)

Arguments

target_object Name of a target object.
signal_index Index number of the signal.
signal_name Output name string of the signal.

Description

signal_name = getsignalname(target_object, signal_index) returns one
string from the index list for the specified signal index.

The signal name refers to the block path of the block whose output is the specified signal.
The software consru8cts the name according to the following rules:

• If the block in question has more than one output port, '/pn' is appended to the
signal name, where n is the port number (starting at 1).

• If the output port in question is not a scalar, '/sn' is appended to the signal name,
where n is the index of signal signal_index within the vector or matrix. For this
purpose, the signals are flattened to one dimension. For example, a 2 x 2 matrix will
be represented by signals /s1, /s2, /s3, /s4.

These rules result in the following function behavior for block Subsystem/path/to/
block:

• If the block has only one output port and the port is a scalar port, the function returns
Subsystem/path/to/block.

8 MATLAB API

8-148

• If the block has one output port, the port is a vector port, and signal_index refers
to the second element within that vector, the function returns Subsystem/path/to/
block/s2.

• If the block has three output ports, the second output port outputs a vector, and
signal_index refers to the seventh element within that vector, the function returns
Subsystem/path/to/block/p2/s7.

• If the block has three output ports, the second port outputs a scalar, and
signal_index refers to the output from the second port, the function returns
Subsystem/path/to/block/p2.

Examples

Get the signal name of signal index 2:

tg = slrt;

sigName = getsignalname(tg,2)

sigName =

Gain2

 load

8-149

load
Download real-time application to target computer

Syntax

target_object = load(target_object,real_time_application)

Description

target_object = load(target_object,real_time_application) loads the
application real_time_application onto the target computer represented by target_object.

The call returns target_object, updated with the new state of the target.

Input Arguments

target_object — Object representing target computer

Object of type SimulinkRealTime.target that represents the target computer. Before
calling this function, make sure that you start the target computer with the Simulink
Real-Time kernel and apply the required the Ethernet link settings.
Data Types: struct

real_time_application — Name of real-time application

Name of the real-time application, without file extension. real_time_application can also
contain the absolute path to the real-time application, without file extension.

You must build the application in the working folder on the development computer.
By default, after the Simulink Coder build process is complete, the Simulink
Real-Time software calls SimulinkRealTime.target.load. If a real-time
application was previously loaded, before downloading the new real-time application,
SimulinkRealTime.target.load unloads the old real-time application.

If you are running the real-time application in Standalone mode, a call to
SimulinkRealTime.target.load has no effect. To load a new application, rebuild the

8 MATLAB API

8-150

standalone application files with the new application and transfer the updated files to
the target computer using SimulinkRealTime.fileSystem. Then, restart the target
computer with the new standalone application.
Data Types: char

Examples

Load xpcosc

Load the real-time application xpcosc into target computer TargetPC1, represented by
target object tg. Start the application.

Get the target object.

tg = SimulinkRealTime.target('TargetPC1')

Target: TargetPC1

 Connected = Yes

 Application = loader

Load the real-time application.

load(tg, 'xpcosc')

Target: TargetPC1

 Connected = Yes

 Application = xpcosc

 Mode = Real-Time Single-Tasking

 Status = stopped

 CPUOverload = none

 ExecTime = 0.0000

 SessionTime = 918.5713

 StopTime = 0.200000

 SampleTime = 0.000250

 AvgTET = NaN

 MinTET = 9999999.000000

 MaxTET = 0.000000

 ViewMode = 0

 TimeLog = Vector(0)

 StateLog = Matrix (0 x 2)

 load

8-151

 OutputLog = Matrix (0 x 2)

 TETLog = Vector(0)

 MaxLogSamples = 16666

 NumLogWraps = 0

 LogMode = Normal

 Scopes = No Scopes defined

 NumSignals = 7

 ShowSignals = off

 NumParameters = 7

 ShowParameters = off

Start the application.

start(tg)

• “Application and Driver Scripts”

See Also
SimulinkRealTime.target.unload

8 MATLAB API

8-152

SimulinkRealTime.target.loadparamset
Restore parameter values saved in specified file

Syntax

loadparamset(target_object,'filename')

Arguments

target_object Name of an existing target object.
filename Enter the name of the file that contains the saved parameters.

Description

loadparamset(target_object,'filename') restores the real-time application
parameter values saved in the file filename. Save this file on a local drive of
the target computer. You must have a parameter file from a previous run of the
SimulinkRealTime.target.saveparamset method.

See Also
SimulinkRealTime.target.saveparamset

 SimulinkRealTime.target.reboot

8-153

SimulinkRealTime.target.reboot
Restart target computer

Syntax

reboot(target_object)

Arguments

target_object Name of an existing target object.

Description

reboot(target_object) restarts the target computer. If a target boot disk is still
present, reboot reloads the Simulink Real-Time kernel.

At the target computer command line, you can use the corresponding command:

reboot

See Also
SimulinkRealTime.target.load | SimulinkRealTime.target.unload

8 MATLAB API

8-154

SimulinkRealTime.target.remscope

Remove scope from target computer

Syntax

remscope(target_object)

remscope(target_object, scope_number)

remscope(target_object, scope_number_vector)

Arguments

target_object Name of a target object.
scope_number_vector Vector of existing scope indices listed in the target object

property Scopes.
scope_number Single scope index.

Description

remscope(target_object) deletes all scopes from the target computer.

remscope(target_object, scope_number) deletes the scope represented by
scope_number from the target computer.

remscope(target_object, scope_number_vector) deletes the scopes represented
by the scope numbers listed in scope_number_vector from the target computer.

The method remscope has no return value. remscope does not delete the scope object
that represents the scope on the development computer.

 SimulinkRealTime.target.remscope

8-155

You can permanently remove only a scope that is added with the method addscope.
This scope is outside the model. If you remove a scope that a scope block added inside the
model, a subsequent run of that model recreates the scope.

At the target computer command line, you can remove one scope or all scopes:

remscope scope_number

remscope all

Examples

Remove a single scope:

tg = slrt;

remscope(tg,1)

Remove two scopes:

tg = slrt;

remscope(tg,[1 2])

Remove all scopes:

tg = slrt;

remscope(tg)

8 MATLAB API

8-156

More About
• “Application and Driver Scripts”

See Also
SimulinkRealTime.target.addscope | SimulinkRealTime.target.getscope

 SimulinkRealTime.target.saveparamset

8-157

SimulinkRealTime.target.saveparamset
Save real-time application parameter values

Syntax

saveparamset(target_object,'filename')

Arguments

target_object Name of an existing target object.
filename File name to contain the saved parameters.

Description

saveparamset(target_object,'filename') saves the real-time application
parameter values in the file filename. This method saves the file on a local drive of
the target computer (C:\ by default). You can later reload these parameters with the
loadparamset function.

Save real-time application parameter values if you change these parameter values while
the application is running in real time. Saving these values enables you to easily recreate
real-time application parameter values from a number of application runs.

See Also
SimulinkRealTime.target.loadparamset

8 MATLAB API

8-158

SimulinkRealTime.target.setparam
Change parameter values for tunable parameters in real-time application

Syntax

[parIndexVec,OldValues,NewValues] = setparam(target_object,

parameter_index, parameter_value)

Arguments

target_object Name of an existing target object.
parameter_index Index number of the parameter.
parameter_value Value for a target object parameter.
[parIndexVec,

OldValues,

NewValues]

Output structure containing the parameter index, previous
parameter values, and the new parameter values.

Description

[parIndexVec,OldValues,NewValues] = setparam(target_object,

parameter_index, parameter_value) sets the value of the target parameter. This
method returns a structure that stores the parameter index, previous parameter values,
and new parameter values.

Examples

Set the value of parameter index 5 to 100:

tg = slrt;

setparam(tg, 5, 100)

ans =

parIndexVec: 5

 SimulinkRealTime.target.setparam

8-159

OldValues: 400

NewValues: 100

Simultaneously set values for multiple parameters. Use the cell array format to specify
new parameter values:

tg = slrt;

setparam(tg, [1 5],{10,100})

ans =

parIndexVec: [1 5]

OldValues: {[2] [4]}

NewValues: {[10] [100]}

8 MATLAB API

8-160

SimulinkRealTime.target.start
Start execution of real-time application on target computer

Syntax

start(target_object)

Arguments

target_object Name of a target object.

Description

start(target_object) starts execution of the real-time application represented
by the target object. Before using this method, you must create and load the real-time
application on the target computer. If a real-time application is running, this command
has no effect.

At the target computer command line, you can use the corresponding command:

start

Examples

Start the real-time application represented by the target object tg:

tg = slrt;

start(tg)

See Also
SimulinkRealTime.target.stop | SimulinkRealTime.target.load |
SimulinkRealTime.fileScope.stop | SimulinkRealTime.hostScope.stop |
SimulinkRealTime.targetScope.stop

 SimulinkRealTime.target.stop

8-161

SimulinkRealTime.target.stop
Stop execution of real-time application on target computer

Syntax

stop(target_object)

Arguments

target_object Name of a target object.

Description

stop(target_object) stops execution of the real-time application represented by the
target object. If the real-time application is stopped, this command has no effect.

At the target computer command line, you can use the corresponding command:

stop

Examples

Stop the real-time application represented by the target object tg:

tg = slrt;

stop(tg)

See Also
SimulinkRealTime.target.start | SimulinkRealTime.fileScope.stop |
SimulinkRealTime.hostScope.stop | SimulinkRealTime.targetScope.stop

8 MATLAB API

8-162

SimulinkRealTime.target.ping
Test communication between development and target computers

Syntax

ping(target_object)

Description

Returns success if the Simulink Real-Time kernel is loaded and running, and
communication is working between the development and target computers. Otherwise,
returns failed.

ping(target_object) returns success if the development computer and the target
computer represented by target_object can communicate using the settings stored in
target_object. Otherwise, returns failed.

Examples

Check communication with default target computer

target_object = slrt;

ping(target_object)

Check communication with specified target computer

target_object = slrt('TargetPC1');

ping(target_object)

 SimulinkRealTime.target.unload

8-163

SimulinkRealTime.target.unload
Remove real-time application from target computer

Syntax

unload(target_object)

Arguments

target_object Name of a target object that represents a real-time application.

Description

unload(target_object) removes the loaded real-time application from the target
computer. The kernel goes into loader mode and is ready to download new real-time
application from the development computer.

If you are running the real-time application in Stand Alone mode, this command has
no effect. To unload and reload a new application, you must rebuild the standalone
application with the new application, and then restart the target computer with the
updated standalone application.

Examples

Unload the real-time application represented by the target object tg.

tg = slrt;

unload(tg)

See Also
SimulinkRealTime.target.load | SimulinkRealTime.target.reboot

8 MATLAB API

8-164

SimulinkRealTime.target.viewTargetScreen

Open real-time window on development computer

Syntax

viewTargetScreen(target_object)

Description

viewTargetScreen(target_object) opens a Simulink Real-Time display window for
target_object.

If you have one target computer in your system, or if you designate a target computer as
the default target computer, build and download the real-time application, and then use
the following syntax:

tg = slrt;

viewTargetScreen(tg)

If you have multiple target computers in your system, create the target object first:

tg = SimulinkRealTime.target('target_name')

viewTargetScreen(tg)

The behavior of this function depends on the value for the environment property
TargetScope:

• If TargetScope is enabled, a single graphics screen is uploaded.

The screen is not continually updated because of a higher data volume when a target
graphics card is in VGA mode. You must explicitly request an update. To manually
update the development computer screen with another target screen, move the
cursor into the display window, right-click, and select Update Simulink Real-Time
Target Screen.

• If TargetScope is disabled, text output is transferred once every second to the
development computer and displayed in the window.

 SimulinkRealTime.target.viewTargetScreen

8-165

Examples

To open the Simulink Real-Time display window for the default target computer in the
Command Window, type:

tg = slrt;

viewTargetScreen(tg)

To open the display window for target computer TargetPC1 in the Command Window,
type:

tg = slrt('TargetPC1');

viewTargetScreen(tg)

8 MATLAB API

8-166

SimulinkRealTime.fileScope
Control and access properties of file scopes

Description

The scope gets a data package from the kernel and stores the data in a file on the target
computer file system. Depending on the setting of WriteMode, the file size is or is not
continuously updated. You can transfer the data to another computer for examination or
plotting.

Methods

The methods in the following table apply to file, host, and target scopes.

Method Description

SimulinkRealTime.fileScope.addsignalAdd signals to scope represented by scope object
SimulinkRealTime.fileScope.remsignalRemove signals from scope represented by scope object
SimulinkRealTime.fileScope.startStart execution of scope on target computer
SimulinkRealTime.fileScope.stopStop execution of scope on target computer
SimulinkRealTime.fileScope.triggerSoftware trigger start of data acquisition for scope or scopes

Properties

Scope object properties let you select signals to acquire, set triggering modes, and access
signal information from the real-time application.

To get the value of a readable scope object property from a scope object:

scope_object = getscope(target_object, scope_number);

value = scope_object.scope_object_property

For example, to get the Decimation of scope 3:

scope_object = getscope(tg, 3);

value = scope_object.Decimation

To set the value of a writable scope property from a scope object:

 SimulinkRealTime.fileScope

8-167

scope_object = getscope(target_object, scope_number);

scope_object.scope_object_property = new_value

For example, to set the Decimation of scope 3:

scope_object = getscope(tg, 3);

scope_object.Decimation = 10

Not all properties are user-writable. For example, property Type is not writable after you
have created the scope.

The properties in the following table apply to file, host, and target scopes.

Property Description Writable

Application Name of the Simulink model associated with this scope
object.

No

Decimation A number n; every nth sample is acquired by a scope. Yes
NumPrePostSamples Number of samples collected before or after a trigger

event. The default value is 0. Entering a negative value
collects samples before the trigger event. Entering a
positive value collects samples after the trigger event. If
you set TriggerMode to 'FreeRun', this property has
no effect on data acquisition.

Yes

NumSamples Number of contiguous samples captured during the
acquisition of a data package. If the scope stops before
capturing this number of samples, the scope has the
collected data up to the end of data collection, then has
zeroes for the remaining uncollected data. Know what
type of data you are collecting, because it is possible
that your data contains zeroes.

For file scopes, this parameter works in conjunction
with the AutoRestart check box. If you select the
AutoRestart box, the file scope collects data up
to Number of Samples, then starts over again,
overwriting the buffer. If you do not select the
AutoRestart box, the file scope collects data only up to
Number of Samples, then stops.

Yes

ScopeId A numeric index, unique for each scope. No

8 MATLAB API

8-168

Property Description Writable

Signals List of signal indices from the target object to display
on the scope.

Yes

Status Indicates whether data is being acquired, the scope
is waiting for a trigger, the scope has been stopped
(interrupted), or acquisition is finished. Values are
'Acquiring', 'Ready for being Triggered',
'Interrupted', and 'Finished'.

No

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope to start
acquiring data. The trigger level can be crossed with a
rising or a falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are:

• 'freerun' — scope triggers on every sample time.
• 'software' — scope triggers from Command

Window.
• 'signal' — scope triggers when a designated

signal changes state.
• 'scope' — scope triggers when a designated scope

triggers.

The default value is 'FreeRun'.

Yes

 SimulinkRealTime.fileScope

8-169

Property Description Writable

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope to trigger
on. For example, if TriggerSample is 0 (default),
the current scope triggers on sample 0 (first sample
acquired) of the triggering scope. The two scopes will
be perfectly synchronized. If TriggerSample is 1, the
first sample (sample 0) of the current scope will be at
the same instant as sample number 1 (second sample in
the acquisition cycle) of the triggering scope.

Setting TriggerSample to -1 means that the current
scope is triggered at the end of the acquisition cycle of
the triggering scope. The first sample of the triggering
scope is acquired one sample after the last sample of
the triggering scope.

Yes

TriggerScope If TriggerMode is 'Scope', it identifies the scope to
use for a trigger. You can set a scope to trigger when
another scope is triggered. Set the slave scope property
TriggerScope to the scope index of the master scope.

Yes

TriggerSignal If TriggerMode is 'Signal', it identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the target
object property Signal.

Yes

TriggerSlope If TriggerMode is 'Signal', it indicates whether the
trigger is on a rising signal, falling signal, or either.

• either — the signal triggers the scope when it
crosses triggerlevel in either the rising or falling
directions.

• rising — the signal triggers the scope when it
crosses triggerlevel in the rising direction.

• falling — the signal triggers the scope when it
crosses triggerlevel in the falling direction.

The default value is 'Either'.

Yes

8 MATLAB API

8-170

Property Description Writable

Type Determines how the development computer collects and
displays its data.

• 'Host' — the data is collected on the target
computer and displayed on the development
computer.

• 'Target' — the data is collected on the target
computer and displayed on the target computer
monitor.

• 'File' — the data is collected and stored on the
target computer.

You set property Type only once, when you create the
scope on the target computer.

No

The properties in the following table apply only to file scopes.

Property Description Writeable

AutoRestart Values are 'on' and 'off'.

For file scopes, enables the file scope
to collect data up to the number of
samples (NumSamples), then start over
again, appending the new data to the
end of the signal data file. Clear the
AutoRestart check box to have the
file scope collect data up to Number of
samples, then stop.

When you start the real-time
application, if the named signal
data file already exists, the software
overwrites the old data with the new
signal data.

Set AutoRestart to 'on' before
enabling DynamicFileName.

No

 SimulinkRealTime.fileScope

8-171

Property Description Writeable

For host or target scopes, this
parameter has no effect.

DynamicFileNameValues are 'on' and 'off'. By
default, the value is 'off'.

Enables the ability to dynamically
create multiple log files for file scopes.

Set AutoRestart to 'on' before
enabling DynamicFileName.

Configure Filename to create
incrementally numbered file names for
the multiple log files. If you do not do
this, the software generates an error
when you try to start the scope.

You can enable the creation of up to
99999999 files (<%%%%%%%%>.dat).
The length of a file name, including
the specifier, cannot exceed eight
characters.

For host or target scopes, this
parameter has no effect.

Yes

8 MATLAB API

8-172

Property Description Writeable

Filename Provide a name for the file to contain
the signal data. By default, the target
computer writes the signal data to a
file named C:\data.dat for scope
blocks. For file scopes that you create
through the MATLAB interface, no
name is initially assigned to FileName.
After you start the scope, the software
assigns a name for the file to acquire
the signal data. This name typically
consists of the scope object name,
ScopeId, and the beginning letters of
the first signal added to the scope.

If you set DynamicFileName and
AutoRestart to 'on', configure
Filename to dynamically increment.
Use a base file name, an underscore
(_), and a < > specifier. Within the
specifier, enter one to eight % symbols.
Each symbol % represents a decimal
location in the file name. The specifier
can appear anywhere in the file name.
For example, the following value
for Filename, C:\work\file_<%%
%>.dat creates file names with the
following pattern:
file_001.dat

file_002.dat

file_003.dat

The last file name of this series is
file_999.dat. If the function is
still logging data when the last file
name reaches its maximum size, the
function starts from the beginning
and overwrites the first file name in
the series. If you do not retrieve the

No

 SimulinkRealTime.fileScope

8-173

Property Description Writeable

data from existing files before they are
overwritten, the data is lost.

For host or target scopes, this
parameter has no effect.

MaxWriteFileSizeProvide the maximum size of
Filename, in bytes. This value must
be a multiple of WriteSize. Default is
536870912.

When the size of a log file reaches
MaxWriteFileSize, the software
creates a subsequently numbered file
name. The software continues logging
data to that file, up until the highest
log file number that you specified. If the
software cannot create additional log
files, it overwrites the first log file.

For host or target scopes, this
parameter has no effect.

Yes

Mode Note: The Mode property will be
removed in a future release.

• For target scopes, use
DisplayMode.

• For file scopes, use WriteMode.
• For host scopes, this parameter has

no effect.

Yes

8 MATLAB API

8-174

Property Description Writeable

WriteMode For file scopes, specify when a file
allocation table (FAT) entry is updated.
Values are 'Lazy' or 'Commit'. Both
modes write the signal data to the file.
With 'Commit' mode, each file write
operation simultaneously updates the
FAT entry for the file. This mode is
slower, but the file system maintains
the actual file size. With 'Lazy' mode,
the FAT entry is updated only when
the file is closed. It is not updated
during each file write operation. This
mode is faster, but if the system stops
responding before the file is closed, the
file system might not know the actual
file size (the file contents, however, are
intact).

For host or target scopes, this
parameter has no effect.

Yes

WriteSize Enter the block size, in bytes, of the
data chunks. This parameter specifies
that a memory buffer, of length number
of samples (NumSamples), collect data
in multiples of WriteSize. By default,
this parameter is 512 bytes, which is
the typical disk sector size. Using a
block size that is the same as the disk
sector size provides better performance.

If your system stops responding, you
can expect to lose an amount of data
the size of WriteSize.

For host or target scopes, this
parameter has no effect.

Yes

 SimulinkRealTime.fileScope

8-175

More About
• “File Scope Usage”

8 MATLAB API

8-176

SimulinkRealTime.fileScope.addsignal
Add signals to file scope represented by scope object

Syntax

addsignal(scope_object_vector, signal_index_vector)

Arguments

scope_object_vector Name of a single scope object or the name of a vector of
scope objects.

signal_index_vector For one signal, use a single number. For two or more
signals, enclose numbers in brackets and separate with
commas.

Description

addsignal(scope_object_vector, signal_index_vector) adds signals to a
scope object. The signals must be specified by their indices, which you can retrieve
using the target object method SimulinkRealTime.target.getsignalid. If
scope_object_vector has two or more scope objects, the same signals are assigned to
each scope.

Before you can add a signal to a scope, you must stop the scope.

At the target computer command line, you can add multiple signals to the scope:

addsignal scope_index = signal_index, signal_index, . . .

Examples

The following examples use model xpcosc.

Add signals Integrator1 and Signal Generator to scope object sc1.

 SimulinkRealTime.fileScope.addsignal

8-177

tg = slrt;

sc1 = addscope(tg,'file',1);

s0 = getsignalid(tg,'Signal Generator');

s1 = getsignalid(tg,'Integrator1');

addsignal(sc1,[s0,s1]);

The scope object property Signals is updated to include the added signals. Type sc1 to
display the properties and values for scope sc1.

More About
• “File Scope Usage”

See Also
SimulinkRealTime.fileScope.remsignal |
SimulinkRealTime.target.addscope |
SimulinkRealTime.target.getsignalid

Related Examples
• “Find Signal and Parameter Indexes”

8 MATLAB API

8-178

SimulinkRealTime.fileScope.remsignal
Remove signals from file scope represented by scope object

Syntax
remsignal(scope_object)

remsignal(scope_object, signal_index_vector)

Arguments
scope_object_vector Scope object or vector of scope objects. The target object

methods addscope or getscope create scope objects.
signal_index_vector Index numbers from the scope object property Signals.

This argument is optional. If it is left out, all signals are
removed.

Description
remsignal(scope_object) removes all signals from a scope object.

remsignal(scope_object, signal_index_vector) removes signals from a scope
object. The signals must be specified by their indices, which you can retrieve using the
target object method getsignalid. If scope_object is a vector containing two or more
scope objects, the same signals are removed from each scope.

Before you can remove a signal from a scope, you must stop the scope.

At the target computer command line, you can remove multiple signals from the scope:

remsignal scope_index = signal_index, signal_index, . . .

signal_index is optional. If it is left out, all signals are removed.

Examples
The following examples use model xpcosc.

 SimulinkRealTime.fileScope.remsignal

8-179

Remove all signals from the scope represented by the scope object sc1:

tg = slrt;

sc1 = getscope(tg,1);

remsignal(sc1)

Remove signals Integrator1 and Signal Generator from the scope on the target
computer:

tg = slrt;

sc1 = getscope(tg,1);

s0 = getsignalid(tg,'Signal Generator');

s1 = getsignalid(tg,'Integrator1');

remsignal(sc1,[s0,s1])

More About
• “File Scope Usage”

See Also
SimulinkRealTime.fileScope.addsignal |
SimulinkRealTime.target.getsignalid |
SimulinkRealTime.target.remscope

Related Examples
• “Find Signal and Parameter Indexes”

8 MATLAB API

8-180

SimulinkRealTime.fileScope.start
Start execution of file scope on target computer

Syntax

start(scope_object)

start(scope_object_vector)

start([scope_object1, scope_object2, . . ., scope_objectN])

Arguments

scope_object Name of single vector object.
scope_object_vector Name of vector of scope objects.

Description

start(scope_object) starts a scope on the target computer represented by a scope
object on the development computer. This method might not start data acquisition, which
depends on the trigger settings.

Before using this method, you must create a scope. To create a scope, use the target
object method addscope or add Simulink Real-Time scope blocks to your Simulink
model.

Alternative syntaxes are start(scope_object_vector)and
start([scope_object1, scope_object2, . . ., scope_objectN]).

At the target computer command line, you can use the corresponding command:

startscope scope_index

startscope all

Examples

Start one scope with the scope object sc1:

 SimulinkRealTime.fileScope.start

8-181

tg = slrt;

sc1 = getscope(tg,1)

start(sc1)

Start two scopes, 1 and 2:

tg = slrt;

somescopes = getscope(tg,[1,2])

start(somescopes)

or

tg = slrt;

sc1 = getscope(tg,1)

sc2 = getscope(tg,2)

start([sc1,sc2])

Start all scopes:

tg = slrt;

allscopes = getscope(tg)

start(allscopes)

More About
• “File Scope Usage”

See Also
SimulinkRealTime.fileScope.stop | SimulinkRealTime.target.getscope |
SimulinkRealTime.target.start

Related Examples
• “Trace Signals at Target Computer Command Line”

8 MATLAB API

8-182

SimulinkRealTime.fileScope.stop
Stop execution of file scope on target computer

Syntax

stop(scope_object)

stop(scope_object_vector)

stop([scope_object1, scope_object2, . . ., scope_objectN])

Arguments

scope_object Name of single vector object.
scope_object_vector Name of vector of scope objects.

Description

stop(scope_object) stops a scope on the target computer represented by a scope
object on the development computer.

Alternative syntaxes are stop(scope_object_vector) and stop([scope_object1,
scope_object2, . . ., scope_objectN]).

At the target computer command line, you can use the corresponding command:

stopscope scope_index

stopscope all

Examples

Stop one scope with the scope object sc1:

tg = slrt;

sc1 = getscope(tg,1)

stop(sc1)

 SimulinkRealTime.fileScope.stop

8-183

Stop two scopes, 1 and 2:

tg = slrt;

somescopes = getscope(tg,[1,2])

stop(somescopes)

or

tg = slrt;

sc1 = getscope(tg,1)

sc2 = getscope(tg,2)

stop([sc1,sc2])

Stop all scopes:

tg = slrt;

allscopes = getscope(tg)

stop(allscopes)

More About
• “File Scope Usage”

See Also
SimulinkRealTime.fileScope.start | SimulinkRealTime.target.getscope |
SimulinkRealTime.target.stop

Related Examples
• “Trace Signals at Target Computer Command Line”

8 MATLAB API

8-184

SimulinkRealTime.fileScope.trigger
Software-trigger start of data acquisition for file scope

Syntax

trigger(scope_object_vector)

Arguments

scope_object_vector Name of a single scope object, name of a vector of
scope objects, list of scope object names in a vector
form [scope_object1, scope_object2], or the
target object method getscope, which returns a
scope_object vector.

Description

trigger(scope_object_vector) triggers the scope represented by the scope object to
acquire the number of data points in the scope object property NumSamples.

If the scope object property TriggerMode has a value of 'Software', this function
is the only way to trigger the scope. However, this function can be used on any scope,
regardless of trigger mode setting. For example, if a scope is signal triggered and did not
trigger because the triggering criteria were not met, this function can be used to force the
scope to trigger.

Examples

Using model xpcosc, set a single file scope to software trigger, trigger the acquisition of
one set of samples, read the file, and plot the data on the host.

tg = slrt;

tg.StopTime = Inf

sc1 = addscope(tg,'file',1);

 SimulinkRealTime.fileScope.trigger

8-185

sc1.FileName = 'data.dat';

addsignal(sc1, 4)

sc1.TriggerMode = 'software';

start(tg)

start(sc1)

trigger(sc1)

pause(0.5)

stop(sc1)

stop(tg)

fsys = SimulinkRealTime.fileSystem(tg);

hdl = fopen(fsys,'data.dat');

ddata = fread(fsys,hdl);

fclose(fsys, hdl);

mdata = SimulinkRealTime.utils.getFileScopeData(ddata);

plot(mdata.data(:,2),mdata.data(:,1))

More About
• “File Scope Usage”

8 MATLAB API

8-186

SimulinkRealTime.hostScope
Control and access properties of host scopes

Description

The kernel acquires a data package and sends it to the scope. The scope waits for an
upload command from the development computer and uploads the data. The development
computer displays the data using a scope viewer or other MATLAB functions.

Methods

The methods in the following table apply to file, host, and target scopes.

Method Description

SimulinkRealTime.hostScope.addsignalAdd signals to scope represented by scope object
SimulinkRealTime.hostScope.remsignalRemove signals from scope represented by scope object
SimulinkRealTime.hostScope.startStart execution of scope on target computer
SimulinkRealTime.hostScope.stopStop execution of scope on target computer
SimulinkRealTime.hostScope.triggerSoftware trigger start of data acquisition for scope or scopes

Properties

Scope object properties let you select signals to acquire, set triggering modes, and access
signal information from the real-time application.

To get the value of a readable scope object property from a scope object:

scope_object = getscope(target_object, scope_number);

value = scope_object.scope_object_property

For example, to get the Decimation of scope 3:

scope_object = getscope(tg, 3);

value = scope_object.Decimation

To set the value of a writable scope property from a scope object:

 SimulinkRealTime.hostScope

8-187

scope_object = getscope(target_object, scope_number);

scope_object.scope_object_property = new_value

For example, to set the Decimation of scope 3:

scope_object = getscope(tg, 3);

scope_object.Decimation = 10

Not all properties are user-writable. For example, property Type is not writable after you
have created the scope.

The properties in the following table apply to file, host, and target scopes.

Property Description Writable

Application Name of the Simulink model associated with this scope
object.

No

Decimation A number n; every nth sample is acquired by a scope. Yes
NumPrePostSamples Number of samples collected before or after a trigger

event. The default value is 0. Entering a negative value
collects samples before the trigger event. Entering a
positive value collects samples after the trigger event. If
you set TriggerMode to 'FreeRun', this property has
no effect on data acquisition.

Yes

NumSamples Number of contiguous samples captured during the
acquisition of a data package. If the scope stops before
capturing this number of samples, the scope has the
collected data up to the end of data collection, then has
zeroes for the remaining uncollected data. Know what
type of data you are collecting, because it is possible
that your data contains zeroes.

For file scopes, this parameter works in conjunction
with the AutoRestart check box. If you select the
AutoRestart box, the file scope collects data up
to Number of Samples, then starts over again,
overwriting the buffer. If you do not select the
AutoRestart box, the file scope collects data only up to
Number of Samples, then stops.

Yes

ScopeId A numeric index, unique for each scope. No

8 MATLAB API

8-188

Property Description Writable

Signals List of signal indices from the target object to display
on the scope.

Yes

Status Indicates whether data is being acquired, the scope
is waiting for a trigger, the scope has been stopped
(interrupted), or acquisition is finished. Values are
'Acquiring', 'Ready for being Triggered',
'Interrupted', and 'Finished'.

No

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope to start
acquiring data. The trigger level can be crossed with a
rising or a falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are:

• 'freerun' — scope triggers on every sample time.
• 'software' — scope triggers from Command

Window.
• 'signal' — scope triggers when a designated

signal changes state.
• 'scope' — scope triggers when a designated scope

triggers.

The default value is 'FreeRun'.

Yes

 SimulinkRealTime.hostScope

8-189

Property Description Writable

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope to trigger
on. For example, if TriggerSample is 0 (default),
the current scope triggers on sample 0 (first sample
acquired) of the triggering scope. The two scopes will
be perfectly synchronized. If TriggerSample is 1, the
first sample (sample 0) of the current scope will be at
the same instant as sample number 1 (second sample in
the acquisition cycle) of the triggering scope.

Setting TriggerSample to -1 means that the current
scope is triggered at the end of the acquisition cycle of
the triggering scope. The first sample of the triggering
scope is acquired one sample after the last sample of
the triggering scope.

Yes

TriggerScope If TriggerMode is 'Scope', it identifies the scope to
use for a trigger. You can set a scope to trigger when
another scope is triggered. Set the slave scope property
TriggerScope to the scope index of the master scope.

Yes

TriggerSignal If TriggerMode is 'Signal', it identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the target
object property Signal.

Yes

TriggerSlope If TriggerMode is 'Signal', it indicates whether the
trigger is on a rising signal, falling signal, or either.

• either — the signal triggers the scope when it
crosses triggerlevel in either the rising or falling
directions.

• rising — the signal triggers the scope when it
crosses triggerlevel in the rising direction.

• falling — the signal triggers the scope when it
crosses triggerlevel in the falling direction.

The default value is 'Either'.

Yes

8 MATLAB API

8-190

Property Description Writable

Type Determines how the development computer collects and
displays its data.

• 'Host' — the data is collected on the target
computer and displayed on the development
computer.

• 'Target' — the data is collected on the target
computer and displayed on the target computer
monitor.

• 'File' — the data is collected and stored on the
target computer.

You set property Type only once, when you create the
scope on the target computer.

No

The properties in the following table apply only to host scopes.

Property Description Writeable

Data Contains the output data for a single
data package from a scope.

For target or file scopes, this parameter
has no effect.

No

Time Contains the time data for a single data
package from a scope.

For target or file scopes, this parameter
has no effect.

No

More About
• “Host Scope Usage”

 SimulinkRealTime.hostScope.addsignal

8-191

SimulinkRealTime.hostScope.addsignal
Add signals to host scope represented by scope object

Syntax

addsignal(scope_object_vector, signal_index_vector)

Arguments

scope_object_vector Name of a single scope object or the name of a vector of
scope objects.

signal_index_vector For one signal, use a single number. For two or more
signals, enclose numbers in brackets and separate with
commas.

Description

addsignal(scope_object_vector, signal_index_vector) adds signals to a
scope object. The signals must be specified by their indices, which you can retrieve
using the target object method SimulinkRealTime.target.getsignalid. If
scope_object_vector has two or more scope objects, the same signals are assigned to
each scope.

Before you can add a signal to a scope, you must stop the scope.

At the target computer command line, you can add multiple signals to the scope:

addsignal scope_index = signal_index, signal_index, . . .

Examples

The following examples use model xpcosc.

Add signals Integrator1 and Signal Generator to scope object sc1.

8 MATLAB API

8-192

tg = slrt;

sc1 = addscope(tg,'host',1);

s0 = getsignalid(tg,'Signal Generator');

s1 = getsignalid(tg,'Integrator1');

addsignal(sc1,[s0,s1]);

The scope object property Signals is updated to include the added signals. Type sc1 to
display the properties and values for scope sc1.

More About
• “Host Scope Usage”

See Also
SimulinkRealTime.hostScope.remsignal |
SimulinkRealTime.target.addscope |
SimulinkRealTime.target.getsignalid

Related Examples
• “Find Signal and Parameter Indexes”

 SimulinkRealTime.hostScope.remsignal

8-193

SimulinkRealTime.hostScope.remsignal
Remove signals from host scope represented by scope object

Syntax
remsignal(scope_object)

remsignal(scope_object, signal_index_vector)

Arguments
scope_object_vector Scope object or vector of scope objects. The target object

methods addscope or getscope create scope objects.
signal_index_vector Index numbers from the scope object property Signals.

This argument is optional. If it is left out, all signals are
removed.

Description
remsignal(scope_object) removes all signals from a scope object.

remsignal(scope_object, signal_index_vector) removes signals from a scope
object. The signals must be specified by their indices, which you can retrieve using the
target object method getsignalid. If scope_object is a vector containing two or more
scope objects, the same signals are removed from each scope.

Before you can remove a signal from a scope, you must stop the scope.

At the target computer command line, you can remove multiple signals from the scope:

remsignal scope_index = signal_index, signal_index, . . .

signal_index is optional. If it is left out, all signals are removed.

Examples
The following examples use model xpcosc.

8 MATLAB API

8-194

Remove all signals from the scope represented by the scope object sc1:

tg = slrt;

sc1 = getscope(tg,1);

remsignal(sc1)

Remove signals Integrator1 and Signal Generator from the scope on the target
computer:

tg = slrt;

sc1 = getscope(tg,1);

s0 = getsignalid(tg,'Signal Generator');

s1 = getsignalid(tg,'Integrator1');

remsignal(sc1,[s0,s1])

More About
• “Host Scope Usage”

See Also
SimulinkRealTime.hostScope.addsignal |
SimulinkRealTime.target.getsignalid |
SimulinkRealTime.target.remscope

Related Examples
• “Find Signal and Parameter Indexes”

 SimulinkRealTime.hostScope.start

8-195

SimulinkRealTime.hostScope.start
Start execution of host scope on target computer

Syntax

start(scope_object)

start(scope_object_vector)

start([scope_object1, scope_object2, . . ., scope_objectN])

Arguments

scope_object Name of single vector object.
scope_object_vector Name of vector of scope objects.

Description

start(scope_object) starts a scope on the target computer represented by a scope
object on the development computer. This method might not start data acquisition, which
depends on the trigger settings.

Before using this method, you must create a scope. To create a scope, use the target
object method addscope or add Simulink Real-Time scope blocks to your Simulink
model.

Alternative syntaxes are start(scope_object_vector)and
start([scope_object1, scope_object2, . . ., scope_objectN]).

At the target computer command line, you can use the corresponding command:

startscope scope_index

startscope all

Examples

Start one scope with the scope object sc1:

8 MATLAB API

8-196

tg = slrt;

sc1 = getscope(tg,1)

start(sc1)

Start two scopes, 1 and 2:

tg = slrt;

somescopes = getscope(tg,[1,2])

start(somescopes)

or

tg = slrt;

sc1 = getscope(tg,1)

sc2 = getscope(tg,2)

start([sc1,sc2])

Start all scopes:

tg = slrt;

allscopes = getscope(tg)

start(allscopes)

More About
• “Host Scope Usage”

See Also
SimulinkRealTime.hostScope.stop | SimulinkRealTime.target.getscope |
SimulinkRealTime.target.start

Related Examples
• “Trace Signals at Target Computer Command Line”

 SimulinkRealTime.hostScope.stop

8-197

SimulinkRealTime.hostScope.stop
Stop execution of host scope on target computer

Syntax

stop(scope_object)

stop(scope_object_vector)

stop([scope_object1, scope_object2, . . ., scope_objectN])

Arguments

scope_object Name of single vector object.
scope_object_vector Name of vector of scope objects.

Description

stop(scope_object) stops a scope on the target computer represented by a scope
object on the development computer.

Alternative syntaxes are stop(scope_object_vector) and stop([scope_object1,
scope_object2, . . ., scope_objectN]).

At the target computer command line, you can use the corresponding command:

stopscope scope_index

stopscope all

Examples

Stop one scope with the scope object sc1:

tg = slrt;

sc1 = getscope(tg,1)

stop(sc1)

8 MATLAB API

8-198

Stop two scopes, 1 and 2:

tg = slrt;

somescopes = getscope(tg,[1,2])

stop(somescopes)

or

tg = slrt;

sc1 = getscope(tg,1)

sc2 = getscope(tg,2)

stop([sc1,sc2])

Stop all scopes:

tg = slrt;

allscopes = getscope(tg)

stop(allscopes)

More About
• “Host Scope Usage”

See Also
SimulinkRealTime.hostScope.start | SimulinkRealTime.target.getscope |
SimulinkRealTime.target.start

Related Examples
• “Trace Signals at Target Computer Command Line”

 SimulinkRealTime.hostScope.trigger

8-199

SimulinkRealTime.hostScope.trigger
Software-trigger start of data acquisition for host scope

Syntax

trigger(scope_object_vector)

Arguments

scope_object_vector Name of a single scope object, name of a vector of
scope objects, list of scope object names in a vector
form [scope_object1, scope_object2], or the
target object method getscope, which returns a
scope_object vector.

Description

trigger(scope_object_vector) triggers the scope represented by the scope object to
acquire the number of data points in the scope object property NumSamples.

If the scope object property TriggerMode has a value of 'Software', this function
is the only way to trigger the scope. However, this function can be used on any scope,
regardless of trigger mode setting. For example, if a scope is signal triggered and did not
trigger because the triggering criteria were not met, this function can be used to force the
scope to trigger.

Examples

Using model xpcosc, set a single host scope to software trigger, trigger the acquisition
of one set of samples, and plot the data on the host from the scope object properties
scope_object.Time and scope_object.Data.

tg = slrt;

8 MATLAB API

8-200

tg.StopTime = Inf;

sc1 = addscope(tg,'host',1);

addsignal(sc1, 4)

sc1.TriggerMode = 'software';

start(tg)

start(sc1)

trigger(sc1)

pause(0.5)

plot(sc1.Time, sc1.Data)

stop(sc1)

stop(tg)

More About
• “Host Scope Usage”

 SimulinkRealTime.targetScope

8-201

SimulinkRealTime.targetScope
Control and access properties of target scopes

Description

The kernel acquires a data package and the scope displays the data on the target
computer screen. Depending on the setting of DisplayMode, the data is displayed
numerically or graphically by a redrawing, sliding, and rolling display.

Methods

The methods in the following table apply to file, host, and target scopes.

Method Description

SimulinkRealTime.targetScope.addsignalAdd signals to scope represented by scope object
SimulinkRealTime.targetScope.remsignalRemove signals from scope represented by scope object
SimulinkRealTime.targetScope.startStart execution of scope on target computer
SimulinkRealTime.targetScope.stopStop execution of scope on target computer
SimulinkRealTime.targetScope.triggerSoftware trigger start of data acquisition for scope or scopes

Properties

Scope object properties let you select signals to acquire, set triggering modes, and access
signal information from the real-time application.

To get the value of a readable scope object property from a scope object:

scope_object = getscope(target_object, scope_number);

value = scope_object.scope_object_property

For example, to get the Decimation of scope 3:

scope_object = getscope(tg, 3);

value = scope_object.Decimation

To set the value of a writable scope property from a scope object:

8 MATLAB API

8-202

scope_object = getscope(target_object, scope_number);

scope_object.scope_object_property = new_value

For example, to set the Decimation of scope 3:

scope_object = getscope(tg, 3);

scope_object.Decimation = 10

Not all properties are user-writable. For example, property Type is not writable after you
have created the scope.

The properties in the following table apply to file, host, and target scopes.

Property Description Writable

Application Name of the Simulink model associated with this scope
object.

No

Decimation A number n; every nth sample is acquired by a scope. Yes
NumPrePostSamples Number of samples collected before or after a trigger

event. The default value is 0. Entering a negative value
collects samples before the trigger event. Entering a
positive value collects samples after the trigger event. If
you set TriggerMode to 'FreeRun', this property has
no effect on data acquisition.

Yes

NumSamples Number of contiguous samples captured during the
acquisition of a data package. If the scope stops before
capturing this number of samples, the scope has the
collected data up to the end of data collection, then has
zeroes for the remaining uncollected data. Know what
type of data you are collecting, because it is possible
that your data contains zeroes.

For file scopes, this parameter works in conjunction
with the AutoRestart check box. If you select the
AutoRestart box, the file scope collects data up
to Number of Samples, then starts over again,
overwriting the buffer. If you do not select the
AutoRestart box, the file scope collects data only up to
Number of Samples, then stops.

Yes

ScopeId A numeric index, unique for each scope. No

 SimulinkRealTime.targetScope

8-203

Property Description Writable

Signals List of signal indices from the target object to display
on the scope.

Yes

Status Indicates whether data is being acquired, the scope
is waiting for a trigger, the scope has been stopped
(interrupted), or acquisition is finished. Values are
'Acquiring', 'Ready for being Triggered',
'Interrupted', and 'Finished'.

No

TriggerLevel If TriggerMode is 'Signal', indicates the value
the signal has to cross to trigger the scope to start
acquiring data. The trigger level can be crossed with a
rising or a falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are:

• 'freerun' — scope triggers on every sample time.
• 'software' — scope triggers from Command

Window.
• 'signal' — scope triggers when a designated

signal changes state.
• 'scope' — scope triggers when a designated scope

triggers.

The default value is 'FreeRun'.

Yes

8 MATLAB API

8-204

Property Description Writable

TriggerSample If TriggerMode is 'Scope', then TriggerSample
specifies which sample of the triggering scope to trigger
on. For example, if TriggerSample is 0 (default),
the current scope triggers on sample 0 (first sample
acquired) of the triggering scope. The two scopes will
be perfectly synchronized. If TriggerSample is 1, the
first sample (sample 0) of the current scope will be at
the same instant as sample number 1 (second sample in
the acquisition cycle) of the triggering scope.

Setting TriggerSample to -1 means that the current
scope is triggered at the end of the acquisition cycle of
the triggering scope. The first sample of the triggering
scope is acquired one sample after the last sample of
the triggering scope.

Yes

TriggerScope If TriggerMode is 'Scope', it identifies the scope to
use for a trigger. You can set a scope to trigger when
another scope is triggered. Set the slave scope property
TriggerScope to the scope index of the master scope.

Yes

TriggerSignal If TriggerMode is 'Signal', it identifies the block
output signal to use for triggering the scope. You
identify the signal with a signal index from the target
object property Signal.

Yes

TriggerSlope If TriggerMode is 'Signal', it indicates whether the
trigger is on a rising signal, falling signal, or either.

• either — the signal triggers the scope when it
crosses triggerlevel in either the rising or falling
directions.

• rising — the signal triggers the scope when it
crosses triggerlevel in the rising direction.

• falling — the signal triggers the scope when it
crosses triggerlevel in the falling direction.

The default value is 'Either'.

Yes

 SimulinkRealTime.targetScope

8-205

Property Description Writable

Type Determines how the development computer collects and
displays its data.

• 'Host' — the data is collected on the target
computer and displayed on the development
computer.

• 'Target' — the data is collected on the target
computer and displayed on the target computer
monitor.

• 'File' — the data is collected and stored on the
target computer.

You set property Type only once, when you create the
scope on the target computer.

No

The properties in the following table apply only to target scopes.

Property Description Writeable

DisplayMode For target scopes, indicate how a scope
displays the signals. Values are:

• numerical — scope displays signal
values as text.

• redraw — scope plots signal values
when numsamples samples has
been acquired.

• rolling — scope scope_index
plots signal values at every sample
time.

Note: Value sliding will be removed
in a future release. It behaves like
value rolling.

For host or file scopes, this parameter
has no effect.

Yes

8 MATLAB API

8-206

Property Description Writeable

.
Grid Values are 'on' and 'off'.

For host or file scopes, this parameter
has no effect.

Yes

Mode Note: The Mode property will be
removed in a future release.

• For target scopes, use
DisplayMode.

• For file scopes, use WriteMode.
• For host scopes, this parameter has

no effect.

Yes

YLimit Minimum and maximum y-axis values.
This property can be set to 'auto'.

For host or file scopes, this parameter
has no effect.

Yes

More About
• “Target Scope Usage”

 SimulinkRealTime.targetScope.addsignal

8-207

SimulinkRealTime.targetScope.addsignal
Add signals to target scope represented by scope object

Syntax

addsignal(scope_object_vector, signal_index_vector)

Arguments

scope_object_vector Name of a single scope object or the name of a vector of
scope objects.

signal_index_vector For one signal, use a single number. For two or more
signals, enclose numbers in brackets and separate with
commas.

Description

addsignal(scope_object_vector, signal_index_vector) adds signals to a
scope object. The signals must be specified by their indices, which you can retrieve
using the target object method SimulinkRealTime.target.getsignalid. If
scope_object_vector has two or more scope objects, the same signals are assigned to
each scope.

Before you can add a signal to a scope, you must stop the scope.

At the target computer command line, you can add multiple signals to the scope:

addsignal scope_index = signal_index, signal_index, . . .

Examples

The following examples use model xpcosc.

Add signals Integrator1 and Signal Generator to scope object sc1.

8 MATLAB API

8-208

tg = slrt;

sc1 = addscope(tg,'target',1);

s0 = getsignalid(tg,'Signal Generator');

s1 = getsignalid(tg,'Integrator1');

addsignal(sc1,[s0,s1]);

The scope object property Signals is updated to include the added signals. Type sc1 to
display the properties and values for scope sc1.

More About
• “Target Scope Usage”

See Also
SimulinkRealTime.target.addscope |
SimulinkRealTime.target.getsignalid |
SimulinkRealTime.targetScope.remsignal

Related Examples
• “Find Signal and Parameter Indexes”

 SimulinkRealTime.targetScope.remsignal

8-209

SimulinkRealTime.targetScope.remsignal
Remove signals from target scope represented by scope object

Syntax
remsignal(scope_object)

remsignal(scope_object, signal_index_vector)

Arguments
scope_object_vector Scope object or vector of scope objects. The target object

methods addscope or getscope create scope objects.
signal_index_vector Index numbers from the scope object property Signals.

This argument is optional. If it is left out, all signals are
removed.

Description
remsignal(scope_object) removes all signals from a scope object.

remsignal(scope_object, signal_index_vector) removes signals from a scope
object. The signals must be specified by their indices, which you can retrieve using the
target object method getsignalid. If scope_object is a vector containing two or more
scope objects, the same signals are removed from each scope.

Before you can remove a signal from a scope, you must stop the scope.

At the target computer command line, you can remove multiple signals from the scope:

remsignal scope_index = signal_index, signal_index, . . .

signal_index is optional. If it is left out, all signals are removed.

Examples
The following examples use model xpcosc.

8 MATLAB API

8-210

Remove all signals from the scope represented by the scope object sc1.

tg = slrt;

sc1 = getscope(tg,1);

remsignal(sc1)

Remove signals Integrator1 and Signal Generator from the scope on the target
computer.

tg = slrt;

sc1 = getscope(tg,1);

s0 = getsignalid(tg,'Signal Generator');

s1 = getsignalid(tg,'Integrator1');

remsignal(sc1,[s0,s1])

More About
• “Target Scope Usage”

See Also
SimulinkRealTime.target.getsignalid |
SimulinkRealTime.target.remscope |
SimulinkRealTime.targetScope.addsignal

Related Examples
• “Find Signal and Parameter Indexes”

 SimulinkRealTime.targetScope.start

8-211

SimulinkRealTime.targetScope.start
Start execution of target scope on target computer

Syntax

start(scope_object)

start(scope_object_vector)

start([scope_object1, scope_object2, . . ., scope_objectN])

Arguments

scope_object Name of single vector object.
scope_object_vector Name of vector of scope objects.

Description

start(scope_object) starts a scope on the target computer represented by a scope
object on the development computer. This method might not start data acquisition, which
depends on the trigger settings.

Before using this method, you must create a scope. To create a scope, use the target
object method addscope or add Simulink Real-Time scope blocks to your Simulink
model.

Alternative syntaxes are start(scope_object_vector)and
start([scope_object1, scope_object2, . . ., scope_objectN]).

At the target computer command line, you can use the corresponding command:

startscope scope_index

startscope all

Examples

Start one scope with the scope object sc1.

8 MATLAB API

8-212

tg = slrt;

sc1 = getscope(tg,1)

start(sc1)

Start two scopes, 1 and 2.

tg = slrt;

somescopes = getscope(tg,[1,2])

start(somescopes)

or

tg = slrt;

sc1 = getscope(tg,1)

sc2 = getscope(tg,2)

start([sc1,sc2])

Start all scopes:

tg = slrt;

allscopes = getscope(tg)

start(allscopes)

More About
• “Target Scope Usage”

See Also
SimulinkRealTime.target.getscope | SimulinkRealTime.target.start |
SimulinkRealTime.targetScope.stop

Related Examples
• “Trace Signals at Target Computer Command Line”

 SimulinkRealTime.targetScope.stop

8-213

SimulinkRealTime.targetScope.stop
Stop execution of target scope on target computer

Syntax

stop(scope_object)

stop(scope_object_vector)

stop([scope_object1, scope_object2, . . ., scope_objectN])

Arguments

scope_object Name of single vector object.
scope_object_vector Name of vector of scope objects.

Description

stop(scope_object) stops a scope on the target computer represented by a scope
object on the development computer.

Alternative syntaxes are stop(scope_object_vector) and stop([scope_object1,
scope_object2, . . ., scope_objectN]).

At the target computer command line, you can use the corresponding command:

stopscope scope_index

stopscope all

Examples

Stop one scope with the scope object sc1.

tg = slrt;

sc1 = getscope(tg,1)

stop(sc1)

8 MATLAB API

8-214

Stop two scopes, 1 and 2.

tg = slrt;

somescopes = getscope(tg,[1,2])

stop(somescopes)

or

tg = slrt;

sc1 = getscope(tg,1)

sc2 = getscope(tg,2)

stop([sc1,sc2])

Stop all scopes:

tg = slrt;

allscopes = getscope(tg)

stop(allscopes)

More About
• “Target Scope Usage”

See Also
SimulinkRealTime.target.getscope | SimulinkRealTime.target.start |
SimulinkRealTime.targetScope.start

Related Examples
• “Trace Signals at Target Computer Command Line”

 SimulinkRealTime.targetScope.trigger

8-215

SimulinkRealTime.targetScope.trigger
Software-trigger start of data acquisition for target scope

Syntax

trigger(scope_object_vector)

Arguments

scope_object_vector Name of a single scope object, name of a vector of
scope objects, list of scope object names in a vector
form [scope_object1, scope_object2], or the
target object method getscope, which returns a
scope_object vector.

Description

trigger(scope_object_vector) triggers the scope represented by the scope object to
acquire the number of data points in the scope object property NumSamples.

If the scope object property TriggerMode has a value of 'Software', this function
is the only way to trigger the scope. However, this function can be used on any scope,
regardless of trigger mode setting. For example, if a scope is signal triggered and did not
trigger because the triggering criteria were not met, this function can be used to force the
scope to trigger.

Examples

Using model xpcosc, set a single target scope to software trigger, trigger the acquisition
of one set of samples, and display the data on the target screen.

tg = slrt;

tg.StopTime = Inf;

sc1 = addscope(tg,'target',1);

8 MATLAB API

8-216

addsignal(sc1, 4)

sc1.TriggerMode = 'software';

start(tg)

start(sc1)

trigger(sc1)

pause(0.5)

stop(sc1)

stop(tg)

More About
• “Target Scope Usage”

